Microstructural Control of LSM/YSZ Composite Cathode for Lower Temperature Operation of SOFC

J. Chaichanawong, K. Sato, H. Abe, K. Murata, T. Fukui, T. Charinpanitkul, W. Tanthapanichakoon, M. Naito
{"title":"Microstructural Control of LSM/YSZ Composite Cathode for Lower Temperature Operation of SOFC","authors":"J. Chaichanawong, K. Sato, H. Abe, K. Murata, T. Fukui, T. Charinpanitkul, W. Tanthapanichakoon, M. Naito","doi":"10.1109/NEMS.2007.351972","DOIUrl":null,"url":null,"abstract":"La0.8Sr0.3MnO3(LSM)/Y2O3 stabilized ZrO2(YSZ) composite powders were mechanically prepared. By changing the mechanical device or processing time, three composite powders with different size distributions were obtained. Then the powders were formed into cathodes of solid oxide fuel cells (SOFCs). The microstructures of the cathodes were carefully characterized by scanning electron microscope (SEM). Losses by internal resistance (IR) and by polarization between the electrolyte and cathode were measured with the current interruption technique. The cathode fabricated by using the powder with the narrowest particle size distribution showed fine grains, uniform porous structure and good contact with the electrolyte layer, thereby resulting in low IR and polarization losses. In contrast, the cathode fabricated from the powder with the broadest particle size distribution contained a large mass of coarse particles and had less uniform structure in the grains and pores, thereby resulting in relatively high IR and polarization losses.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.351972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

La0.8Sr0.3MnO3(LSM)/Y2O3 stabilized ZrO2(YSZ) composite powders were mechanically prepared. By changing the mechanical device or processing time, three composite powders with different size distributions were obtained. Then the powders were formed into cathodes of solid oxide fuel cells (SOFCs). The microstructures of the cathodes were carefully characterized by scanning electron microscope (SEM). Losses by internal resistance (IR) and by polarization between the electrolyte and cathode were measured with the current interruption technique. The cathode fabricated by using the powder with the narrowest particle size distribution showed fine grains, uniform porous structure and good contact with the electrolyte layer, thereby resulting in low IR and polarization losses. In contrast, the cathode fabricated from the powder with the broadest particle size distribution contained a large mass of coarse particles and had less uniform structure in the grains and pores, thereby resulting in relatively high IR and polarization losses.
SOFC低温运行LSM/YSZ复合阴极的微观结构控制
采用机械方法制备了La0.8Sr0.3MnO3(LSM)/Y2O3稳定的ZrO2(YSZ)复合粉体。通过改变机械装置或加工时间,可以得到三种不同粒径分布的复合粉体。然后将粉末制成固体氧化物燃料电池(sofc)的阴极。利用扫描电子显微镜(SEM)对阴极的微观结构进行了详细的表征。采用电流中断技术测量了电解液与阴极之间的内阻损耗和极化损耗。采用粒径分布最窄的粉末制备的阴极颗粒细,多孔结构均匀,与电解质层接触良好,红外损耗和极化损耗低。相比之下,由粒径分布最广的粉末制备的阴极含有大量的粗颗粒,颗粒和孔隙结构不均匀,从而导致较高的红外和极化损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信