Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning

Hanbin Hu, Chen-Yu He, Peng Li
{"title":"Semi-supervised Wafer Map Pattern Recognition using Domain-Specific Data Augmentation and Contrastive Learning","authors":"Hanbin Hu, Chen-Yu He, Peng Li","doi":"10.1109/ITC50571.2021.00019","DOIUrl":null,"url":null,"abstract":"Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks.","PeriodicalId":147006,"journal":{"name":"2021 IEEE International Test Conference (ITC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC50571.2021.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wafer map pattern recognition is instrumental for detecting systemic manufacturing process issues. However, high cost in labeling wafer patterns renders it impossible to leverage large amounts of valuable unlabeled data in conventional machine learning based wafer map pattern prediction. We proposed a contrastive learning framework for semi-supervised learning and prediction of wafer map patterns. Our framework incorporates an encoder to learn good representation for wafer maps in an unsupervised manner, and a supervised head to recognize wafer map patterns. In particular, contrastive learning is applied for the unsupervised encoder representation learning supported by augmented data generated by different transformations (views) of wafer maps. We identified a set of transformations to effectively generate similar variants of each original pattern. We further proposed a novel rotation-twist transformation to augment wafer map data by rotating each given wafer map for which the angle of rotation is a smooth function of the radius. Experimental results demonstrate that the proposed semi-supervised learning framework greatly improves recognition accuracy compared to traditional supervised methods, and the rotation-twist transformation further enhances the recognition accuracy in both semi-supervised and supervised tasks.
基于特定领域数据增强和对比学习的半监督晶圆图模式识别
晶圆图模式识别是检测系统制造过程问题的工具。然而,标记晶圆图模式的高成本使得在传统的基于机器学习的晶圆图模式预测中不可能利用大量有价值的未标记数据。我们提出了一种用于半监督学习和晶圆图模式预测的对比学习框架。我们的框架包含一个编码器,以无监督的方式学习晶圆图的良好表示,以及一个有监督的头来识别晶圆图模式。特别地,对比学习应用于无监督编码器表示学习,该学习由晶圆图的不同转换(视图)生成的增强数据支持。我们确定了一组转换,以有效地生成每个原始模式的相似变体。我们进一步提出了一种新的旋转-扭转变换,通过旋转每个给定的晶圆图来增加晶圆图数据,其中旋转角度是半径的光滑函数。实验结果表明,与传统的监督学习方法相比,所提出的半监督学习框架大大提高了识别精度,并且旋转-扭转变换进一步提高了半监督任务和监督任务的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信