{"title":"Fabrication and characterization of all hydrogel cantilevers for atomic force microscopy applications","authors":"I. Lee, Jungchul Lee","doi":"10.1109/MEMSYS.2014.6765745","DOIUrl":null,"url":null,"abstract":"This paper reports a novel method for fabricating hydrogel based microcantilevers by using dynamic mask lithography. A hydrogel, polyethyleneglycol diacrylate (PEGDA), was introduced between two parallel polydimethylsiloxane (PDMS) guides then cured with ultra-violet (UV) exposure to intended shape and size defined by the dynamic mask; an image sent from a PC to a liquid crystal display projector. One PDMS guide has an embedded glass piece which serves as a handle for the microcantilever and the other guide is with or without an inverted pyramid tip mold to fabricate tip-integrated or tipless microcantilevers, respectively. After fabricated hydrogel microcantilevers were thoroughly characterized by using a stylus profilometer and an atomic force microscope (AFM), they were employed for both contact and non-contact mode AFM imaging. In case of non-contact mode, the imaging performance of hydrogel AFM cantilevers was comparable to that of commercial silicon AFM cantilevers.","PeriodicalId":312056,"journal":{"name":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2014.6765745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper reports a novel method for fabricating hydrogel based microcantilevers by using dynamic mask lithography. A hydrogel, polyethyleneglycol diacrylate (PEGDA), was introduced between two parallel polydimethylsiloxane (PDMS) guides then cured with ultra-violet (UV) exposure to intended shape and size defined by the dynamic mask; an image sent from a PC to a liquid crystal display projector. One PDMS guide has an embedded glass piece which serves as a handle for the microcantilever and the other guide is with or without an inverted pyramid tip mold to fabricate tip-integrated or tipless microcantilevers, respectively. After fabricated hydrogel microcantilevers were thoroughly characterized by using a stylus profilometer and an atomic force microscope (AFM), they were employed for both contact and non-contact mode AFM imaging. In case of non-contact mode, the imaging performance of hydrogel AFM cantilevers was comparable to that of commercial silicon AFM cantilevers.