Artificial neural network using thin-film transistors - Working confirmation of asymmetric circuit -

Yuki Yamaguchi, Ryohei Morita, Yusuke Fujita, T. Miyatani, T. Kasakawa, M. Kimura
{"title":"Artificial neural network using thin-film transistors - Working confirmation of asymmetric circuit -","authors":"Yuki Yamaguchi, Ryohei Morita, Yusuke Fujita, T. Miyatani, T. Kasakawa, M. Kimura","doi":"10.1109/IMFEDK.2013.6602249","DOIUrl":null,"url":null,"abstract":"We are developing neural networks of device level using thin-film transistors (TFT). By adopting an interconnect-type neural network and utilizing a characteristic shift of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed the working by a circuit where the input and output elements are asymmetric. This is a result leading to a super-large, self-learning, and high-flexibility system.","PeriodicalId":434595,"journal":{"name":"2013 IEEE International Meeting for Future of Electron Devices, Kansai","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Meeting for Future of Electron Devices, Kansai","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMFEDK.2013.6602249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We are developing neural networks of device level using thin-film transistors (TFT). By adopting an interconnect-type neural network and utilizing a characteristic shift of poly-Si TFTs as a variable strength of synapse connection, which was originally an issue, we realized the neuron consisting of eight TFTs and synapse of only one TFT. Particularly in this presentation, we confirmed the working by a circuit where the input and output elements are asymmetric. This is a result leading to a super-large, self-learning, and high-flexibility system.
利用薄膜晶体管的人工神经网络。非对称电路的工作确认
我们正在利用薄膜晶体管(TFT)开发器件级神经网络。通过采用互连型神经网络,利用多晶硅TFT的特征位移作为突触连接的可变强度,这是一个问题,我们实现了由八个TFT组成的神经元和只有一个TFT的突触。特别是在这个演示中,我们通过一个输入和输出元素不对称的电路确认了工作原理。这就形成了一个超大的、自我学习的、高度灵活的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信