Sanity-Check: Boosting the Reliability of Safety-Critical Deep Neural Network Applications

Elbruz Ozen, A. Orailoglu
{"title":"Sanity-Check: Boosting the Reliability of Safety-Critical Deep Neural Network Applications","authors":"Elbruz Ozen, A. Orailoglu","doi":"10.1109/ATS47505.2019.000-8","DOIUrl":null,"url":null,"abstract":"The widespread usage of deep neural networks in autonomous driving necessitates a consideration of the safety arguments against hardware-level faults. This study confirms the possible catastrophic impact of hardware-level faults on DNN accuracy; the consequent need for low-cost fault tolerance methods can be met through a rigorous exploration of the mathematical properties of the associated computations. We propose Sanity-Check, which makes use of the linearity property and employs spatial and temporal checksums to protect fully-connected and convolutional layers in deep neural networks. Sanity-Check can be purely implemented on software and deployed on different execution platforms with no additional modification. We also propose Sanity-Check hardware which integrates seamlessly with modern DNN accelerators and neutralizes the small performance overhead in pure software implementations. Sanity-Check delivers perfect error-caused misprediction coverage in our experiments, which makes it a promising candidate for boosting the reliability of safety-critical deep neural network applications.","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.000-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The widespread usage of deep neural networks in autonomous driving necessitates a consideration of the safety arguments against hardware-level faults. This study confirms the possible catastrophic impact of hardware-level faults on DNN accuracy; the consequent need for low-cost fault tolerance methods can be met through a rigorous exploration of the mathematical properties of the associated computations. We propose Sanity-Check, which makes use of the linearity property and employs spatial and temporal checksums to protect fully-connected and convolutional layers in deep neural networks. Sanity-Check can be purely implemented on software and deployed on different execution platforms with no additional modification. We also propose Sanity-Check hardware which integrates seamlessly with modern DNN accelerators and neutralizes the small performance overhead in pure software implementations. Sanity-Check delivers perfect error-caused misprediction coverage in our experiments, which makes it a promising candidate for boosting the reliability of safety-critical deep neural network applications.
安全性检查:提高安全关键深度神经网络应用的可靠性
深度神经网络在自动驾驶中的广泛应用需要考虑硬件级故障的安全性问题。本研究证实了硬件级故障对深度神经网络精度可能产生的灾难性影响;因此,对低成本容错方法的需求可以通过对相关计算的数学性质的严格探索来满足。我们提出了Sanity-Check,它利用线性特性并采用空间和时间校验和来保护深度神经网络中的全连接层和卷积层。security - check可以完全在软件上实现,也可以部署在不同的执行平台上,不需要额外的修改。我们还提出了与现代DNN加速器无缝集成的安全性检查硬件,并消除了纯软件实现中的小性能开销。在我们的实验中,safety- check提供了完美的错误导致的错误预测覆盖率,这使得它成为提高安全关键型深度神经网络应用可靠性的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信