Fault location in distribution networks using clustering techniques

M. Manar, S. Foda
{"title":"Fault location in distribution networks using clustering techniques","authors":"M. Manar, S. Foda","doi":"10.1109/ICM.2001.997521","DOIUrl":null,"url":null,"abstract":"This paper studies an existing 13.8 kilovolt distribution network which serves an oil production field spread over an area of approximately sixty kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, the paper introduces several methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to indicate the feasibility of the suggested fault location method.","PeriodicalId":360389,"journal":{"name":"ICM 2001 Proceedings. The 13th International Conference on Microelectronics.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICM 2001 Proceedings. The 13th International Conference on Microelectronics.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2001.997521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper studies an existing 13.8 kilovolt distribution network which serves an oil production field spread over an area of approximately sixty kilometers square, in order to locate any fault that may occur anywhere in the network using fuzzy c-mean classification techniques. In addition, the paper introduces several methods for normalizing data and selecting the optimum number of clusters in order to classify data. Results and conclusions are given to indicate the feasibility of the suggested fault location method.
基于聚类技术的配电网故障定位
本文对某油田现有的13.8千伏配电网进行了研究,该配电网面积约为60平方公里,目的是利用模糊c均值分类技术对电网中任何可能发生的故障进行定位。此外,本文还介绍了几种数据规范化和选择最佳簇数的方法,以便对数据进行分类。结果和结论表明了所提出的故障定位方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信