{"title":"Nanoscale devices for solid state refrigeration and power generation","authors":"A. Shakouri","doi":"10.1109/STHERM.2004.1291293","DOIUrl":null,"url":null,"abstract":"A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solid-state and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.","PeriodicalId":409730,"journal":{"name":"Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No.04CH37545)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE Cat. No.04CH37545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2004.1291293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A brief review of various techniques to engineer nanoscale thermal and electrical properties of materials is given. The main emphasis is on various energy conversion mechanisms, particularly, thermo electric refrigeration and power generation. Recent experimental and theoretical results on superlattice and quantum dot thermoelectrics and solid-state and vacuum thermionic thin film devices are reviewed. We also present an overview of the research activities at the multi university Thermionic Energy Conversion Center on the design of solid-state and vacuum devices that could convert heat into electricity with hot side temperatures ranging from 300 to 650C and with high conversion efficiency.