{"title":"Advanced composites and other advanced materials for electronic packaging thermal management","authors":"C. Zweben","doi":"10.1109/ISAOM.2001.916602","DOIUrl":null,"url":null,"abstract":"A variety of new advanced composites and other advanced materials are now available which provide great advantages over conventional materials for thermal management and microelectronic packaging, including: extremely high thermal conductivities (over three times that of copper); low, tailorable coefficients of thermal expansion; weight savings of up to 80%; size reductions of up to 65%; extremely high strength and stiffness; reduced thermal stresses; increased reliability; simplified thermal design; possible elimination of heat pipes; low cost, net shape fabrication processes; potential cost reductions. Composites and other advanced materials are in a state of continual development that undoubtedly will result in improved and new materials providing even greater benefits. The number of production applications is increasing rapidly, and these new materials are well on their way to becoming the 21st century materials of choice for thermal management and electronic packaging. This paper provides an overview of advanced composites and other materials used in thermal management and electronic packaging, including properties, applications and future trends. The focus is on materials having thermal conductivities at least as high as those of aluminum alloys. We also examine future trends.","PeriodicalId":321904,"journal":{"name":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (IEEE Cat. No.01TH8562)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAOM.2001.916602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
A variety of new advanced composites and other advanced materials are now available which provide great advantages over conventional materials for thermal management and microelectronic packaging, including: extremely high thermal conductivities (over three times that of copper); low, tailorable coefficients of thermal expansion; weight savings of up to 80%; size reductions of up to 65%; extremely high strength and stiffness; reduced thermal stresses; increased reliability; simplified thermal design; possible elimination of heat pipes; low cost, net shape fabrication processes; potential cost reductions. Composites and other advanced materials are in a state of continual development that undoubtedly will result in improved and new materials providing even greater benefits. The number of production applications is increasing rapidly, and these new materials are well on their way to becoming the 21st century materials of choice for thermal management and electronic packaging. This paper provides an overview of advanced composites and other materials used in thermal management and electronic packaging, including properties, applications and future trends. The focus is on materials having thermal conductivities at least as high as those of aluminum alloys. We also examine future trends.