{"title":"Carrier transport and stress engineering in advanced nanoscale MOS transistors","authors":"K. Uchida, M. Saitoh","doi":"10.1109/VTSA.2009.5159267","DOIUrl":null,"url":null,"abstract":"This paper reviews the carrier transport mechanisms and stress engineering in advanced nanoscale MOSFETs. First, carrier transport in bulk (100) and (110) MOSFETs is reviewed. Sub-band structure engineering to enhance mobility as well as ballistic current is also examined.","PeriodicalId":309622,"journal":{"name":"2009 International Symposium on VLSI Technology, Systems, and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Technology, Systems, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTSA.2009.5159267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper reviews the carrier transport mechanisms and stress engineering in advanced nanoscale MOSFETs. First, carrier transport in bulk (100) and (110) MOSFETs is reviewed. Sub-band structure engineering to enhance mobility as well as ballistic current is also examined.