Current balancing control for parallel connected IGBTs using programmable gate driver output resistance

M. Sasaki, H. Nishio, A. Shorten, W. Ng
{"title":"Current balancing control for parallel connected IGBTs using programmable gate driver output resistance","authors":"M. Sasaki, H. Nishio, A. Shorten, W. Ng","doi":"10.1109/ISPSD.2013.6694398","DOIUrl":null,"url":null,"abstract":"A gate driver IC with programmable output resistance (Rout) capable of performing current balancing for parallel connected IGBTs is presented in this paper. This novel method is to dynamically adjust the gate driver Rout to minimize the difference in the turn-on/off delay times between parallel connected IGBTs. The programmable gate driver Rout is implemented using a segmented output stage technique. This gate driver IC is designed and fabricated using TSMC's 0.18μm BCD Gen-2 process. Experimental results are obtained by measuring the current distribution between two parallel connected IGBTs (600V, 90A). These results indicate an improvement in average current imbalance of 89% and 98% for the turn-on and off periods, respectively.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A gate driver IC with programmable output resistance (Rout) capable of performing current balancing for parallel connected IGBTs is presented in this paper. This novel method is to dynamically adjust the gate driver Rout to minimize the difference in the turn-on/off delay times between parallel connected IGBTs. The programmable gate driver Rout is implemented using a segmented output stage technique. This gate driver IC is designed and fabricated using TSMC's 0.18μm BCD Gen-2 process. Experimental results are obtained by measuring the current distribution between two parallel connected IGBTs (600V, 90A). These results indicate an improvement in average current imbalance of 89% and 98% for the turn-on and off periods, respectively.
采用可编程栅极驱动器输出电阻的并联igbt电流平衡控制
提出了一种具有可编程输出电阻的栅极驱动集成电路,能够对并联igbt进行电流平衡。这种新颖的方法是动态调整栅极驱动器路由,以最小化并联igbt之间的开/关延迟时间差异。可编程门驱动器路由采用分段输出级技术实现。该栅极驱动IC采用台积电0.18μm BCD Gen-2工艺设计和制造。通过测量两个并联igbt (600V, 90A)之间的电流分布,得到了实验结果。这些结果表明,在导通和关断期间,平均电流不平衡分别改善了89%和98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信