A Quantitative Analysis of Neutron-Induced Multi-Cell Upset in Deep Submicron SRAMs and of the Impact Due to Anomalous Noise

H. Kameyama, Y. Yahagi, E. Ibe
{"title":"A Quantitative Analysis of Neutron-Induced Multi-Cell Upset in Deep Submicron SRAMs and of the Impact Due to Anomalous Noise","authors":"H. Kameyama, Y. Yahagi, E. Ibe","doi":"10.1109/RELPHY.2007.369566","DOIUrl":null,"url":null,"abstract":"In this work, the multiplicity of neutron-induced upsets of SRAMs with 130/180 nm technologies is analyzed by using several neutron beams and RTSER. The neutron peak-energy dependence of the ratio for MCU to the total number of upsets can be described by Weibull-type function with a threshold energy for the MCU. As a result of the 130nm SRAM test, the probability function of MCU can be approximated as a superposition of an exponential and a Lorentzian. We also demonstrate that the MCU/SEU ratio obtained by real-time measurements (RTSER) cross over the ASER data at around 20-40MeV. This indicates that the MCU obtained from ASER test using high neutron peak energy more than 50MeV tends to lead to an excessive estimation of the MCU/SEU ratio compared to the RTSER measurements. In addition, the effect due to anomalous noise has been studied and the phenomenon could be suggested as some special signs related to a geophysical mechanism and is expected to be investigated further with more analysis.","PeriodicalId":433104,"journal":{"name":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2007.369566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, the multiplicity of neutron-induced upsets of SRAMs with 130/180 nm technologies is analyzed by using several neutron beams and RTSER. The neutron peak-energy dependence of the ratio for MCU to the total number of upsets can be described by Weibull-type function with a threshold energy for the MCU. As a result of the 130nm SRAM test, the probability function of MCU can be approximated as a superposition of an exponential and a Lorentzian. We also demonstrate that the MCU/SEU ratio obtained by real-time measurements (RTSER) cross over the ASER data at around 20-40MeV. This indicates that the MCU obtained from ASER test using high neutron peak energy more than 50MeV tends to lead to an excessive estimation of the MCU/SEU ratio compared to the RTSER measurements. In addition, the effect due to anomalous noise has been studied and the phenomenon could be suggested as some special signs related to a geophysical mechanism and is expected to be investigated further with more analysis.
深亚微米sram中中子诱导多细胞扰动及异常噪声影响的定量分析
本文利用多束中子束和RTSER分析了130/180 nm工艺的sram中子诱导扰动的多重性。MCU的中子峰值能量与总扰动数的关系可以用weibull型函数来描述,该函数具有MCU的阈值能量。通过对130nm SRAM的测试,可以将MCU的概率函数近似为指数函数和洛伦兹函数的叠加。我们还证明了通过实时测量(RTSER)获得的MCU/SEU比率在20-40MeV左右跨越ASER数据。这表明,与RTSER测量相比,使用超过50MeV的高中子峰值能量从ASER测试中获得的MCU往往会导致对MCU/SEU比的过度估计。此外,对异常噪声的影响进行了研究,认为这种现象可能是与地球物理机制有关的一些特殊迹象,值得进一步研究和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信