Critical temperature shift for Stress Induced Voiding in advanced Cu interconnects for 32 nm and beyond

Rao R. Morusupalli, R. Rao, Tae-Kyu Lee, Yu‐Lin Shen, M. Kunz, N. Tamura, A. Budiman
{"title":"Critical temperature shift for Stress Induced Voiding in advanced Cu interconnects for 32 nm and beyond","authors":"Rao R. Morusupalli, R. Rao, Tae-Kyu Lee, Yu‐Lin Shen, M. Kunz, N. Tamura, A. Budiman","doi":"10.1109/IRPS.2012.6241901","DOIUrl":null,"url":null,"abstract":"In this paper we present work showing evidence of a shift in the Stress Migration (SM) peak profile temperature for smaller interconnect linewidths typically associated with the 32 nm technology node and beyond. With other parameters (fabrication, materials, line thickness and via diameter being kept nominal among these samples), this clear shift towards the lower temperatures for smaller linewidths appear to indicate a size effect in the Stress Migration in advanced Cu interconnect scheme. Through the synchrotron x-ray micro-diffraction experiment, we show that plasticity is involved in the stress relaxation process at about 200 C, but not at higher temperature nor at room temperature. Such plasticity-assisted strain relaxation in interconnects especially at lower temperature range could explain the critical temperature shift observed in the present study, in addition to the typical diffusion-assisted mechanism. In conjunction with the experimental study, numerical finite element analyses were also conducted to provide greater insight. The modeling result demonstrates the importance of creep plasticity in causing thermal stress relaxation in Cu interconnects.","PeriodicalId":341663,"journal":{"name":"2012 IEEE International Reliability Physics Symposium (IRPS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2012.6241901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we present work showing evidence of a shift in the Stress Migration (SM) peak profile temperature for smaller interconnect linewidths typically associated with the 32 nm technology node and beyond. With other parameters (fabrication, materials, line thickness and via diameter being kept nominal among these samples), this clear shift towards the lower temperatures for smaller linewidths appear to indicate a size effect in the Stress Migration in advanced Cu interconnect scheme. Through the synchrotron x-ray micro-diffraction experiment, we show that plasticity is involved in the stress relaxation process at about 200 C, but not at higher temperature nor at room temperature. Such plasticity-assisted strain relaxation in interconnects especially at lower temperature range could explain the critical temperature shift observed in the present study, in addition to the typical diffusion-assisted mechanism. In conjunction with the experimental study, numerical finite element analyses were also conducted to provide greater insight. The modeling result demonstrates the importance of creep plasticity in causing thermal stress relaxation in Cu interconnects.
在32纳米及以上的先进铜互连中应力诱导空化的临界温度变化
在本文中,我们展示的工作显示了应力迁移(SM)峰值剖面温度在较小的互连线宽中发生变化的证据,这些线宽通常与32 nm及以上的技术节点相关。在其他参数(制造、材料、线厚和通孔直径在这些样品中保持标称)的情况下,对于较小线宽,这种向较低温度的明显转变似乎表明,在先进的Cu互连方案中,应力迁移存在尺寸效应。通过同步加速器x射线微衍射实验,我们发现在200℃左右,塑性参与了应力松弛过程,但在更高温度和室温下没有塑性参与应力松弛过程。除了典型的扩散辅助机制外,这种塑性辅助的互连体应变松弛,特别是在较低温度范围内,可以解释本研究中观察到的临界温度变化。结合实验研究,数值有限元分析也进行了更深入的了解。模拟结果表明蠕变塑性在Cu互连中引起热应力松弛的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信