{"title":"Ab-initio quantum transport with a basis of unit-cell restricted Bloch functions and the NEGF formalism","authors":"M. Pala, D. Esseni","doi":"10.23919/SISPAD49475.2020.9241641","DOIUrl":null,"url":null,"abstract":"This invited contribution illustrates the theory and application of a first-principle transport methodology employing a basis set obtained directly from the Bloch functions computed with a plane wave (PW) ab-initio solver. We start from a PW density functional theory (DFT) Hamiltonian, use a unitary transformation to real space in the transport direction, and then discuss a basis of Bloch functions enabling a huge reduction of the size of the Hamiltonian blocks and an effective suppression of possible unphysical states. Our methodology enables ab-initio transport simulations with a good computational efficiency, and we here present results for self-consistent simulations of a singlegate monolayer PtSe2 field effect transistor.","PeriodicalId":206964,"journal":{"name":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SISPAD49475.2020.9241641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This invited contribution illustrates the theory and application of a first-principle transport methodology employing a basis set obtained directly from the Bloch functions computed with a plane wave (PW) ab-initio solver. We start from a PW density functional theory (DFT) Hamiltonian, use a unitary transformation to real space in the transport direction, and then discuss a basis of Bloch functions enabling a huge reduction of the size of the Hamiltonian blocks and an effective suppression of possible unphysical states. Our methodology enables ab-initio transport simulations with a good computational efficiency, and we here present results for self-consistent simulations of a singlegate monolayer PtSe2 field effect transistor.