Effect of Gan interlayer thickness on the Algan/Gan heterostructure field-effect transistors for self-terminated wet etching process

Liuan Li, Liang He, Fan Yang, Zijun Chen, Xiaorong Zhang, Lei He, Zhisheng Wu, Baijun Zhang, Yang Liu
{"title":"Effect of Gan interlayer thickness on the Algan/Gan heterostructure field-effect transistors for self-terminated wet etching process","authors":"Liuan Li, Liang He, Fan Yang, Zijun Chen, Xiaorong Zhang, Lei He, Zhisheng Wu, Baijun Zhang, Yang Liu","doi":"10.1109/IFWS.2016.7803759","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the effect of GaN interlayer thickness and AlGaN back barrier layer on the material and electrical properties of AlGaN/GaN HFETs. When the thickness of GaN interlayer is approximately 3 and 5 nm, it will slightly increase surface roughness and degrades 2DEG carrier density. The 2DEG channel is also up shifted to nearly beneath the GaN interlayer. By contrast, 10 nm GaN interlayer causes a clear double channel and an obvious degradation of 2DEG carrier density. It is also demonstrated that the introduction of AlGaN back barrier layer can effectively improve the 2DEG confinement and reduce the scattering, resulting in smaller frequency dispersion effect. HFETs fabricated on the sample with both back barrier layer and 5 nm GaN interlayer present good pinch-off characteristics and high on/off ratio of approximately 107. This optimized structure is suitable for application in self-terminated wet etching process.","PeriodicalId":331453,"journal":{"name":"2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IFWS.2016.7803759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigated the effect of GaN interlayer thickness and AlGaN back barrier layer on the material and electrical properties of AlGaN/GaN HFETs. When the thickness of GaN interlayer is approximately 3 and 5 nm, it will slightly increase surface roughness and degrades 2DEG carrier density. The 2DEG channel is also up shifted to nearly beneath the GaN interlayer. By contrast, 10 nm GaN interlayer causes a clear double channel and an obvious degradation of 2DEG carrier density. It is also demonstrated that the introduction of AlGaN back barrier layer can effectively improve the 2DEG confinement and reduce the scattering, resulting in smaller frequency dispersion effect. HFETs fabricated on the sample with both back barrier layer and 5 nm GaN interlayer present good pinch-off characteristics and high on/off ratio of approximately 107. This optimized structure is suitable for application in self-terminated wet etching process.
自端湿法蚀刻工艺中Gan层间厚度对Gan /Gan异质结构场效应晶体管的影响
本文研究了氮化镓层间厚度和氮化镓背势垒层对氮化镓/氮化镓hfet材料和电学性能的影响。当GaN间层厚度约为3 nm和5 nm时,表面粗糙度略有增加,载流子密度下降。2DEG通道也向上移位到几乎在GaN中间层下面。相比之下,10 nm的GaN中间层导致了明显的双通道和2DEG载流子密度的明显下降。研究还表明,引入AlGaN背势垒层可以有效地改善2DEG约束,减少散射,从而减小频散效应。在具有后阻挡层和5 nm GaN中间层的样品上制备的hfet具有良好的掐断特性和高的通/关比,约为107。该优化结构适用于自端湿法蚀刻工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信