{"title":"Design techniques for gate-leakage reduction in CMOS circuits","authors":"R. Guindi, F. Najm","doi":"10.1109/ISQED.2003.1194710","DOIUrl":null,"url":null,"abstract":"Oxide tunneling current in MOS transistors is fast becoming a non-negligible component of power consumption, as gate oxides get thinner, and could become in the future the dominant leakage mechanism in sub-100 nm CMOS circuits. In this paper, we present an analysis of static CMOS circuits from a gate-leakage point of view. We first consider the dependence of the gate current on various conditions for a single transistor and identify 3 main regions in which a MOS transistor will operate between clock transitions. The amount of gate-current differs by several orders of magnitude from one region to another. Whether a transistor will leak significantly or not is determined by its position in relation to other transistors within a structure. By comparing logically equivalent but structurally different CMOS circuits, we find that the gate current exhibits a 'structure dependence'. Also, the total gate-leakage in a given structure varies significantly for different combinations of inputs, from which we derive \"state-dependent gate-leakage tables\" that can be used to estimate the total amount of gate-current for a large circuit. Finally, we suggest guidelines aimed at reducing the amount of oxide-leakage current based on the presented structure and state dependencies.","PeriodicalId":448890,"journal":{"name":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2003.1194710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68
Abstract
Oxide tunneling current in MOS transistors is fast becoming a non-negligible component of power consumption, as gate oxides get thinner, and could become in the future the dominant leakage mechanism in sub-100 nm CMOS circuits. In this paper, we present an analysis of static CMOS circuits from a gate-leakage point of view. We first consider the dependence of the gate current on various conditions for a single transistor and identify 3 main regions in which a MOS transistor will operate between clock transitions. The amount of gate-current differs by several orders of magnitude from one region to another. Whether a transistor will leak significantly or not is determined by its position in relation to other transistors within a structure. By comparing logically equivalent but structurally different CMOS circuits, we find that the gate current exhibits a 'structure dependence'. Also, the total gate-leakage in a given structure varies significantly for different combinations of inputs, from which we derive "state-dependent gate-leakage tables" that can be used to estimate the total amount of gate-current for a large circuit. Finally, we suggest guidelines aimed at reducing the amount of oxide-leakage current based on the presented structure and state dependencies.