Advanced physical models for mask data verification and impacts on physical layout synthesis

Q. Qian, S. Tan
{"title":"Advanced physical models for mask data verification and impacts on physical layout synthesis","authors":"Q. Qian, S. Tan","doi":"10.1109/ISQED.2003.1194720","DOIUrl":null,"url":null,"abstract":"The proliferation and acceptance of reticle enhancement technologies (RET) like optical proximity correction (OPC) and phase shift masking (PSM) have significantly increased the cost and complexity of sub-100 nm photomasks. The photomask layout is no longer an exact replica of the design layout. As a result, reliably verifying RET synthesis accuracy, structural integrity, and conformance to mask fabrication rules are crucial for the manufacture of nanometer regime VLSI designs. In this paper, we demonstrate a physical model based mask layout verification system. The new system consists of an efficient wafer-patterning simulator that is able to solve the process physical equations for optical imaging and resist development and hence can achieve high degree accuracy required by mask verification tasks. It is able to efficiently evaluate mask performance by simulating edge displacement errors between wafer image and the intended layout. We show the capabilities for hot spot detection, line width variation analysis, and process window prediction capabilities with a sample practical layout. We also discuss the potential of the new physical model simulator for improving circuit performance in physical layout synthesis.","PeriodicalId":448890,"journal":{"name":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2003.1194720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The proliferation and acceptance of reticle enhancement technologies (RET) like optical proximity correction (OPC) and phase shift masking (PSM) have significantly increased the cost and complexity of sub-100 nm photomasks. The photomask layout is no longer an exact replica of the design layout. As a result, reliably verifying RET synthesis accuracy, structural integrity, and conformance to mask fabrication rules are crucial for the manufacture of nanometer regime VLSI designs. In this paper, we demonstrate a physical model based mask layout verification system. The new system consists of an efficient wafer-patterning simulator that is able to solve the process physical equations for optical imaging and resist development and hence can achieve high degree accuracy required by mask verification tasks. It is able to efficiently evaluate mask performance by simulating edge displacement errors between wafer image and the intended layout. We show the capabilities for hot spot detection, line width variation analysis, and process window prediction capabilities with a sample practical layout. We also discuss the potential of the new physical model simulator for improving circuit performance in physical layout synthesis.
掩模数据验证的先进物理模型及其对物理布局综合的影响
光学接近校正(OPC)和相移掩蔽(PSM)等光谱线增强技术(RET)的普及和接受大大增加了亚100 nm光掩模的成本和复杂性。掩模布局不再是设计布局的精确副本。因此,可靠地验证RET合成精度,结构完整性和掩膜制造规则的一致性对于纳米级超大规模集成电路设计的制造至关重要。在本文中,我们演示了一个基于物理模型的掩模布局验证系统。新系统由一个高效的晶圆图案模拟器组成,该模拟器能够解决光学成像和抗蚀显影的过程物理方程,因此可以达到掩模验证任务所需的高精度。它能够通过模拟晶圆图像与预期布局之间的边缘位移误差来有效地评估掩模性能。我们展示了热点检测、线宽变化分析和过程窗口预测能力的功能,并提供了一个示例实际布局。我们还讨论了新的物理模型模拟器在物理布局合成中提高电路性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信