{"title":"A dual function Parylene-based biomimetic tactile sensor and actuator for next generation mechanically responsive microelectrode arrays","authors":"C. Gutierrez, E. Meng","doi":"10.1109/SENSOR.2009.5285612","DOIUrl":null,"url":null,"abstract":"We present the first multimodal Parylene-based biomimetic platform with the ability to measure tactile forces while simultaneously enabling active stimulation/recording of neural tissue via movable microelectrodes. A liquid-filled microchamber encapsulating interdigitated microelectrodes performs the dual functions of actuation and tactile sensing. The electrodes are impedance-based tactile sensing elements and sites for electrolytic gas generation for pneumatic control of microelectrode position. Impedance sensitivity of up to 1.7 %/µm and out-of-plane positioning up to 8 µm were demonstrated. We also report on the mechanotransduction of biomimetic channel structures.","PeriodicalId":247826,"journal":{"name":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2009.5285612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We present the first multimodal Parylene-based biomimetic platform with the ability to measure tactile forces while simultaneously enabling active stimulation/recording of neural tissue via movable microelectrodes. A liquid-filled microchamber encapsulating interdigitated microelectrodes performs the dual functions of actuation and tactile sensing. The electrodes are impedance-based tactile sensing elements and sites for electrolytic gas generation for pneumatic control of microelectrode position. Impedance sensitivity of up to 1.7 %/µm and out-of-plane positioning up to 8 µm were demonstrated. We also report on the mechanotransduction of biomimetic channel structures.