Circuits/cutsets duality and theoretical foundation of a structural approach to survivable logical topology mapping in IP-over-WDM optical networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Krishnaiyan Thulasiraman , Tachun Lin , Muhammad Javed , Guoliang Xue , Zhili Zhou
{"title":"Circuits/cutsets duality and theoretical foundation of a structural approach to survivable logical topology mapping in IP-over-WDM optical networks","authors":"Krishnaiyan Thulasiraman ,&nbsp;Tachun Lin ,&nbsp;Muhammad Javed ,&nbsp;Guoliang Xue ,&nbsp;Zhili Zhou","doi":"10.1016/j.osn.2021.100653","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The survivable logical topology<span> mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the </span></span>physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This problem is known to be NP-complete. For this SLTM problem, two lines of investigations have been reported in the literature: the </span>mathematical programming<span><span> approach [1] and the structural approach introduced by Kurant and Thiran in [2] and pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient slicing of elastic optical networks. We conclude with a </span>comparative evaluation<span><span>, based on simulations, of the different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as </span>smart power grids.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"44 ","pages":"Article 100653"},"PeriodicalIF":1.9000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000503","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The survivable logical topology mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This problem is known to be NP-complete. For this SLTM problem, two lines of investigations have been reported in the literature: the mathematical programming approach [1] and the structural approach introduced by Kurant and Thiran in [2] and pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient slicing of elastic optical networks. We conclude with a comparative evaluation, based on simulations, of the different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as smart power grids.

电路/切割集对偶性和IP-over-WDM光网络中可生存逻辑拓扑映射的结构方法的理论基础
IP-over- wdm网络中的生存性逻辑拓扑映射(SLTM)问题是将逻辑拓扑(IP层)中的每条链路映射到物理拓扑(光层)中的光路上,以便物理链路的故障不会导致逻辑拓扑断开。这个问题被称为np完全问题。对于这个SLTM问题,文献中报道了两种研究方法:数学规划方法[1]和Kurant和Thiran在[2]中引入的结构方法,Thulasiraman等人[3,4,5]继续研究。本文对文献[3,4,5]中提出的可生存拓扑映射问题的理论基础进行了综合处理。我们相信本文提出的算法策略将成为弹性光网络弹性切片这一新兴领域中任何策略的重要阶段。最后,我们基于模拟对本文中开发的不同算法策略进行了比较评估,并指出了IP-over-WDM光网络之外的应用,特别是相互依赖的多层网络物理系统(如智能电网)的可生存设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信