Hot spare components for performance-cost improvement in multi-core SIMT

S. H. Mozafari, B. Meyer
{"title":"Hot spare components for performance-cost improvement in multi-core SIMT","authors":"S. H. Mozafari, B. Meyer","doi":"10.1109/DFT.2015.7315135","DOIUrl":null,"url":null,"abstract":"Adding redundant components is a well known technique for replacing defective components either before shipment or in the field, resulting yield improvement and consequently cost reduction. However, most yield improvement strategies utilize redundant components only when another component fails (i.e., cold spares). In this paper, we investigate the cost and performance implications of employing hot spares in multi-core single-instruction, multiple-thread (SIMT) processors. Hot spares are available to increase yield (and reduce costs) when the components are defective; otherwise, they can be used to improve performance in the field. Starting with a baseline architecture with six cores, and 32 lanes each, we added three hot spare cores, with two lanes each. When we make the lanes of the hot spares available to replace defective lanes in the baseline cores, we observe that expected performance per cost improved more than 2.5 and 1.7 times relative to systems integrating no redundancy and cold spares, respectively.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Adding redundant components is a well known technique for replacing defective components either before shipment or in the field, resulting yield improvement and consequently cost reduction. However, most yield improvement strategies utilize redundant components only when another component fails (i.e., cold spares). In this paper, we investigate the cost and performance implications of employing hot spares in multi-core single-instruction, multiple-thread (SIMT) processors. Hot spares are available to increase yield (and reduce costs) when the components are defective; otherwise, they can be used to improve performance in the field. Starting with a baseline architecture with six cores, and 32 lanes each, we added three hot spare cores, with two lanes each. When we make the lanes of the hot spares available to replace defective lanes in the baseline cores, we observe that expected performance per cost improved more than 2.5 and 1.7 times relative to systems integrating no redundancy and cold spares, respectively.
热备组件,提高多核SIMT的性能成本
添加冗余组件是一种众所周知的技术,用于在装运前或现场更换有缺陷的组件,从而提高产量并最终降低成本。然而,大多数良率改进策略仅在另一个组件发生故障时才使用冗余组件(即冷备件)。在本文中,我们研究了在多核单指令多线程(SIMT)处理器中使用热备用的成本和性能影响。当零件有缺陷时,可用热备件提高成品率(并降低成本);否则,它们可以用于提高现场性能。从具有6个核心、每个核心32个通道的基准架构开始,我们添加了3个热备用核心,每个核心有两个通道。当我们使用热备件的通道来替换基线核心中有缺陷的通道时,我们观察到,相对于集成无冗余和冷备件的系统,每成本的预期性能分别提高了2.5倍和1.7倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信