Jin-Woong Jeong, Sungkyu Kwon, Jae-Nam Yu, Seong-Yong Jang, Sun-Ho Oh, Choul‐Young Kim, Ga-Won Lee, H. Lee
{"title":"Modeling of T-model equivalent circuit for spiral inductors in 90 nm CMOS technology","authors":"Jin-Woong Jeong, Sungkyu Kwon, Jae-Nam Yu, Seong-Yong Jang, Sun-Ho Oh, Choul‐Young Kim, Ga-Won Lee, H. Lee","doi":"10.1109/ICMTS.2015.7106104","DOIUrl":null,"url":null,"abstract":"This paper presents a newly proposed T-model of spiral inductors in 90nm radio frequency (RF) CMOS technology. Inductor modeling is one of the most difficult problems facing silicon-based RF integrated circuit designers, and the inclusion of many parameters of the inductor equivalent circuit consumes a lot of time during circuit simulation. In this paper, two models of spiral inductors were simulated to compare their agreement with the measured data from 100MHz to 10GHz. The proposed T-model had less parameters than the conventional double-π model, and also showed good agreement in the RF performance of the spiral inductors, such as quality factor (Q-factor) and inductance (L). In addition, the proposed T-model had an error rate of less than 5% with the S-parameter of measured data, similar to the double-π model.","PeriodicalId":177627,"journal":{"name":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2015.7106104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper presents a newly proposed T-model of spiral inductors in 90nm radio frequency (RF) CMOS technology. Inductor modeling is one of the most difficult problems facing silicon-based RF integrated circuit designers, and the inclusion of many parameters of the inductor equivalent circuit consumes a lot of time during circuit simulation. In this paper, two models of spiral inductors were simulated to compare their agreement with the measured data from 100MHz to 10GHz. The proposed T-model had less parameters than the conventional double-π model, and also showed good agreement in the RF performance of the spiral inductors, such as quality factor (Q-factor) and inductance (L). In addition, the proposed T-model had an error rate of less than 5% with the S-parameter of measured data, similar to the double-π model.