Fundamental statistical properties of reconstruction methodology for TDDB with variability in BEOL/MOL/FEOL applications

E. Wu, J. Stathis, Baozhen Li, A. Kim, B. Linder, R. Bolam, G. Bonilla
{"title":"Fundamental statistical properties of reconstruction methodology for TDDB with variability in BEOL/MOL/FEOL applications","authors":"E. Wu, J. Stathis, Baozhen Li, A. Kim, B. Linder, R. Bolam, G. Bonilla","doi":"10.1109/IRPS.2016.7574510","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the validity of the so-called big-data deconvolution approach with its use of sampling-based reconstruction methodology for general applications to BEOL and MOL dielectrics with substantial non-uniformity and multiple variability sources. Unlike conventional statistical sampling, we have found that all parameters (β and T63) and area scaling characteristics of reconstructed Weibull distributions along with T63 variation (σT63) across the sampling units (chips or dies) show a strong dependence on sampling number per unit (chip). We developed the statistical theory to correctly characterize the sampling number dependence of reconstructed Weibull slope and σT63, including a criterion for the general applicability of the sampling-based reconstruction methodology. We have examined why the big-data deconvolution approach cannot be used for BEOL/MOL dielectrics with multiple variability sources. The sampling-number dependence of reconstructed T63 fundamentally nullifies the feasibility of this approach while sampling-number dependence of area scaling should be always demonstrated prior to the use this methodology. Finally, we show that VBD results can provide misleading conclusions due to the different scaling property of variance in Vbd and Tbd in use of reconstruction methodology.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, we investigate the validity of the so-called big-data deconvolution approach with its use of sampling-based reconstruction methodology for general applications to BEOL and MOL dielectrics with substantial non-uniformity and multiple variability sources. Unlike conventional statistical sampling, we have found that all parameters (β and T63) and area scaling characteristics of reconstructed Weibull distributions along with T63 variation (σT63) across the sampling units (chips or dies) show a strong dependence on sampling number per unit (chip). We developed the statistical theory to correctly characterize the sampling number dependence of reconstructed Weibull slope and σT63, including a criterion for the general applicability of the sampling-based reconstruction methodology. We have examined why the big-data deconvolution approach cannot be used for BEOL/MOL dielectrics with multiple variability sources. The sampling-number dependence of reconstructed T63 fundamentally nullifies the feasibility of this approach while sampling-number dependence of area scaling should be always demonstrated prior to the use this methodology. Finally, we show that VBD results can provide misleading conclusions due to the different scaling property of variance in Vbd and Tbd in use of reconstruction methodology.
BEOL/MOL/FEOL应用中具有变异性的TDDB重建方法的基本统计性质
在这项工作中,我们研究了所谓的大数据反褶积方法的有效性,该方法使用基于采样的重建方法,用于具有大量非均匀性和多变异性源的BEOL和MOL介电体的一般应用。与传统的统计抽样不同,我们发现重建威布尔分布的所有参数(β和T63)和面积缩放特征以及T63在采样单元(芯片或模具)上的变化(σT63)强烈依赖于每单元(芯片)的采样次数。我们发展了正确表征重建威布尔斜率与σT63的采样数相关性的统计理论,包括基于采样的重建方法的一般适用性准则。我们已经研究了为什么大数据反褶积方法不能用于具有多个变异性源的BEOL/MOL介电体。重建T63的采样数依赖性从根本上取消了该方法的可行性,而在使用该方法之前,应始终证明面积缩放的采样数依赖性。最后,我们发现在使用重建方法时,由于VBD和Tbd中方差的标度特性不同,VBD结果可能会提供误导性结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信