{"title":"Quality challenges of the nanometer design realm","authors":"T. Vucurevich","doi":"10.1109/ISQED.2003.1194704","DOIUrl":null,"url":null,"abstract":"It is commonly agreed that sub-nanometer design is electronic design technology’s next big challenge. With the economic stakes higher than ever, the vendors of electronic design solutions must put themselves into their customers' shoes through comprehensive, high-quality programs. My understanding of the differences designers face at geometries below 100 nanometers has led to my discussion of some of the challenges the industry faces in the sub-nanometer realm. This includes the domination of wires in digital design, which requires the ability to design the best quality wires through continuous convergence, a wire-centric methodology. In the nanometer world, the front-end and back-end disappear, leaving the prototype as the chip. This includes detailed wiring, and a new full-chip iteration every day. Most sub-nanometer ICs and SoCs will be digital/mixed-signal. This leads to custom design issues, such as integrating sensitive circuits with massive digital and mixed-signal design, productivity and foundry interface. Nanometer SoC verification includes digital, analog and software, and a 70 percent silicon re-spin rate because of associated functional errors. At sub-nanometer levels, design-in becomes a major bottleneck, especially across a design chain, which can only be solved by silicon-package-board co-design.","PeriodicalId":448890,"journal":{"name":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2003.1194704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It is commonly agreed that sub-nanometer design is electronic design technology’s next big challenge. With the economic stakes higher than ever, the vendors of electronic design solutions must put themselves into their customers' shoes through comprehensive, high-quality programs. My understanding of the differences designers face at geometries below 100 nanometers has led to my discussion of some of the challenges the industry faces in the sub-nanometer realm. This includes the domination of wires in digital design, which requires the ability to design the best quality wires through continuous convergence, a wire-centric methodology. In the nanometer world, the front-end and back-end disappear, leaving the prototype as the chip. This includes detailed wiring, and a new full-chip iteration every day. Most sub-nanometer ICs and SoCs will be digital/mixed-signal. This leads to custom design issues, such as integrating sensitive circuits with massive digital and mixed-signal design, productivity and foundry interface. Nanometer SoC verification includes digital, analog and software, and a 70 percent silicon re-spin rate because of associated functional errors. At sub-nanometer levels, design-in becomes a major bottleneck, especially across a design chain, which can only be solved by silicon-package-board co-design.