D. Malta, C. Gregory, D. Temple, T. Knutson, Chen Wang, T. Richardson, Yun Zhang, R. Rhoades
{"title":"Integrated process for defect-free copper plating and chemical-mechanical polishing of through-silicon vias for 3D interconnects","authors":"D. Malta, C. Gregory, D. Temple, T. Knutson, Chen Wang, T. Richardson, Yun Zhang, R. Rhoades","doi":"10.1109/ECTC.2010.5490731","DOIUrl":null,"url":null,"abstract":"The fabrication of through-silicon vias (TSVs) is a major component in the development of three-dimensional (3D) integration technology and advanced 3D packaging approaches. The large diameter and length of TSVs, as compared to traditional interconnects, create some unique process challenges. Via plating and chemical-mechanical polishing (CMP) processes used in standard copper interconnect technology are generally not suitable for TSV fabrication. Therefore, efforts are being made to develop such processes specifically for TSV technology. This paper will describe the development of a void-free Cu electroplating process for TSV filling, along with CMP processing to remove the overburden layer and expose the Cu-filled vias for subsequent metallization. The focus of the paper will be the integration of the TSV plating and CMP processes, with discussion regarding observed integration challenges and their solutions. First, a Cu electroplating process was developed for defect-free, bottom-up filling of silicon vias from 20–200µm in diameter and 150–375µm deep, with aspect ratios from 1:1 to 8:1. Next, CMP tests were conducted using Cu-filled silicon vias of 50µm diameter and 150µm depth, designed for use in a MEMS wafer-level packaging application. These tests indicated that plating nonuniformity and Cu mound defects over filled vias caused significant CMP process issues. The plating process was then modified to eliminate these problems in the Cu films, resulting in improved CMP uniformity and reduced polishing time.","PeriodicalId":429629,"journal":{"name":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Proceedings 60th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2010.5490731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
The fabrication of through-silicon vias (TSVs) is a major component in the development of three-dimensional (3D) integration technology and advanced 3D packaging approaches. The large diameter and length of TSVs, as compared to traditional interconnects, create some unique process challenges. Via plating and chemical-mechanical polishing (CMP) processes used in standard copper interconnect technology are generally not suitable for TSV fabrication. Therefore, efforts are being made to develop such processes specifically for TSV technology. This paper will describe the development of a void-free Cu electroplating process for TSV filling, along with CMP processing to remove the overburden layer and expose the Cu-filled vias for subsequent metallization. The focus of the paper will be the integration of the TSV plating and CMP processes, with discussion regarding observed integration challenges and their solutions. First, a Cu electroplating process was developed for defect-free, bottom-up filling of silicon vias from 20–200µm in diameter and 150–375µm deep, with aspect ratios from 1:1 to 8:1. Next, CMP tests were conducted using Cu-filled silicon vias of 50µm diameter and 150µm depth, designed for use in a MEMS wafer-level packaging application. These tests indicated that plating nonuniformity and Cu mound defects over filled vias caused significant CMP process issues. The plating process was then modified to eliminate these problems in the Cu films, resulting in improved CMP uniformity and reduced polishing time.