Testability-Aware Low Power Controller Design with Evolutionary Learning

Min Li, Zhengyuan Shi, Zezhong Wang, Weiwei Zhang, Yu Huang, Qiang Xu
{"title":"Testability-Aware Low Power Controller Design with Evolutionary Learning","authors":"Min Li, Zhengyuan Shi, Zezhong Wang, Weiwei Zhang, Yu Huang, Qiang Xu","doi":"10.1109/ITC50571.2021.00046","DOIUrl":null,"url":null,"abstract":"XORNet-based low power controller is a popular technique to reduce circuit transitions in scan-based testing. However, existing solutions construct the XORNet evenly for scan chain control, and it may result in sub-optimal solutions without any design guidance. In this paper, we propose a novel testability-aware low power controller with evolutionary learning. The XORNet generated from the proposed genetic algorithm (GA) enables adaptive control for scan chains according to their usages, thereby significantly improving XORNet encoding capacity, reducing the number of failure cases with ATPG and decreasing test data volume. Experimental results indicate that under the same control bits, our GA-guided XORNet design can improve the fault coverage by up to 2.11%. The proposed GA-guided XORNets also allows reducing the number of control bits, and the total testing time decreases by 20.78% on average and up to 47.09% compared to the existing design without sacrificing test coverage.","PeriodicalId":147006,"journal":{"name":"2021 IEEE International Test Conference (ITC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC50571.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

XORNet-based low power controller is a popular technique to reduce circuit transitions in scan-based testing. However, existing solutions construct the XORNet evenly for scan chain control, and it may result in sub-optimal solutions without any design guidance. In this paper, we propose a novel testability-aware low power controller with evolutionary learning. The XORNet generated from the proposed genetic algorithm (GA) enables adaptive control for scan chains according to their usages, thereby significantly improving XORNet encoding capacity, reducing the number of failure cases with ATPG and decreasing test data volume. Experimental results indicate that under the same control bits, our GA-guided XORNet design can improve the fault coverage by up to 2.11%. The proposed GA-guided XORNets also allows reducing the number of control bits, and the total testing time decreases by 20.78% on average and up to 47.09% compared to the existing design without sacrificing test coverage.
基于进化学习的可测试性低功耗控制器设计
基于xornet的低功耗控制器是在基于扫描的测试中减少电路转换的一种流行技术。然而,现有的解决方案均匀地构建XORNet用于扫描链控制,在没有任何设计指导的情况下,可能会导致次优解。在本文中,我们提出了一种新的具有进化学习的可测试性感知的低功耗控制器。遗传算法生成的XORNet能够根据扫描链的使用情况进行自适应控制,从而显著提高了XORNet编码容量,减少了ATPG的失败案例数量,减少了测试数据量。实验结果表明,在相同的控制位下,我们的ga引导XORNet设计可将故障覆盖率提高2.11%。所提出的ga制导XORNets还可以减少控制位的数量,与现有设计相比,在不牺牲测试覆盖率的情况下,总测试时间平均减少20.78%,最多减少47.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信