2005 Microwave Electronics: Measurements, Identification, Applications

T. Streicher
{"title":"2005 Microwave Electronics: Measurements, Identification, Applications","authors":"T. Streicher","doi":"10.1109/memia.2005.247494","DOIUrl":null,"url":null,"abstract":"We introduce various notions of partial topos, i.e. “topos without terminal object”. The strongest one, called local topos, is motivated by the key examples of finite trees and sheaves with compact support. Local toposes satisfy all the usual exactness properties of toposes but are neither cartesian closed nor have a subobject classifier. Examples for the weaker notions are local homemorphisms and discrete fibrations. Finally, for partial toposes with supports we show how they can be completed to toposes via an inverse limit construction.","PeriodicalId":197337,"journal":{"name":"2005 5th International Conference on Microwave Electronics: Measurement, Identification, Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Microwave Electronics: Measurement, Identification, Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/memia.2005.247494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce various notions of partial topos, i.e. “topos without terminal object”. The strongest one, called local topos, is motivated by the key examples of finite trees and sheaves with compact support. Local toposes satisfy all the usual exactness properties of toposes but are neither cartesian closed nor have a subobject classifier. Examples for the weaker notions are local homemorphisms and discrete fibrations. Finally, for partial toposes with supports we show how they can be completed to toposes via an inverse limit construction.
2005微波电子学:测量、鉴定、应用
我们引入了部分拓扑的各种概念,即“无终端对象的拓扑”。最强大的一种被称为局部拓扑,它是由有限的树和具有紧凑支撑的草垛的关键例子所激发的。局部拓扑满足所有常用的精确性质,但既不是笛卡尔闭的,也没有子对象分类器。较弱的概念的例子是局部同构和离散颤动。最后,对于具有支撑的部分拓扑,我们展示了如何通过逆极限构造将它们完成为拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信