{"title":"Dynamic self-clamping at short-circuit turn-off of high-voltage IGBTs","authors":"T. Basler, Riteshkumar Bhojani, J. Lutz, R. Jakob","doi":"10.1109/ISPSD.2013.6694440","DOIUrl":null,"url":null,"abstract":"Measurements show that the IGBT is able to clamp the collector-emitter voltage to a certain value at short-circuit turn-off despite a very low gate turn-off resistor in combination with a high parasitic inductance is applied. The IGBT itself reduces the turn-off diC/dt by avalanche injection. However, device destructions during fast turn-off were observed which cannot be linked with an overvoltage failure mode. Measurements and semiconductor simulations of high-voltage IGBTs explain the self-clamping mechanism in detail. Possible failures which can be connected with filamentation processes are described. Options for improving the IGBT robustness during short-circuit turn-off are discussed.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Measurements show that the IGBT is able to clamp the collector-emitter voltage to a certain value at short-circuit turn-off despite a very low gate turn-off resistor in combination with a high parasitic inductance is applied. The IGBT itself reduces the turn-off diC/dt by avalanche injection. However, device destructions during fast turn-off were observed which cannot be linked with an overvoltage failure mode. Measurements and semiconductor simulations of high-voltage IGBTs explain the self-clamping mechanism in detail. Possible failures which can be connected with filamentation processes are described. Options for improving the IGBT robustness during short-circuit turn-off are discussed.