Abnormalities Classification in WCE Images Using Pretrained Deep Learning Networks

Dallel Bouyaya, S. Benierbah
{"title":"Abnormalities Classification in WCE Images Using Pretrained Deep Learning Networks","authors":"Dallel Bouyaya, S. Benierbah","doi":"10.1109/PAIS56586.2022.9946892","DOIUrl":null,"url":null,"abstract":"Wireless capsule endoscope (WCE) is the only device that provides endoscopic images of the entire small intestine. However, because of the large number of images it produces, the physicians need to spend a long time reviewing them, for the diagnosis. Therefore, Automatic computer-aided diagnosis tools are highly needed, to reduce the burden of physicians. In this paper, we present an automatic classification of different lesions in WCE images. We propose a deep learning method based on an ensemble of two pre-trained convolutional neural networks (CNN), namely MobileNet and DenseNet169. The extracted features from the entire selected architectures are concatenated and then fed into a multilayer perceptron, for the classification task. Experimental results proved that the proposed method improves the performance compared to the individual CNN classifiers.","PeriodicalId":266229,"journal":{"name":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Pattern Analysis and Intelligent Systems (PAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAIS56586.2022.9946892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wireless capsule endoscope (WCE) is the only device that provides endoscopic images of the entire small intestine. However, because of the large number of images it produces, the physicians need to spend a long time reviewing them, for the diagnosis. Therefore, Automatic computer-aided diagnosis tools are highly needed, to reduce the burden of physicians. In this paper, we present an automatic classification of different lesions in WCE images. We propose a deep learning method based on an ensemble of two pre-trained convolutional neural networks (CNN), namely MobileNet and DenseNet169. The extracted features from the entire selected architectures are concatenated and then fed into a multilayer perceptron, for the classification task. Experimental results proved that the proposed method improves the performance compared to the individual CNN classifiers.
基于预训练深度学习网络的WCE图像异常分类
无线胶囊内窥镜(WCE)是目前唯一能提供整个小肠内窥镜图像的设备。然而,由于它产生了大量的图像,医生需要花很长时间来检查它们,以进行诊断。因此,迫切需要计算机辅助自动诊断工具,以减轻医生的负担。在本文中,我们提出了一种自动分类不同病变的WCE图像。我们提出了一种基于两个预训练卷积神经网络(CNN)的集成的深度学习方法,即MobileNet和DenseNet169。从整个选定的架构中提取的特征被连接起来,然后馈送到一个多层感知器中,用于分类任务。实验结果表明,与单个CNN分类器相比,该方法提高了分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信