{"title":"Preparation of MWCNT-Ni0.5Zn0.5Fe2O4-Epoxy composites with both dielectric and ferromagnetic properties","authors":"Qi Zheng, Pengli Zhu, R. Sun, C. Wong","doi":"10.1109/EMAP.2012.6507833","DOIUrl":null,"url":null,"abstract":"In this work, ferromagnetic Ni0.5Zn0.5Fe2O4 (NZF) particles were prepared through the co-precipitation method. Then, dielectric ferromagnetic composites with multi-walled carbon nanotubes (MWCNT) and NZF embedded into E-51 Epoxy matrix were synthesized by a curing process using tetraethylenepentamine (TEPA) as the curing agent. In order to facilitate the contrast, the volume fraction of the NZF ferrite was fixed at 17%, and the permeability and permittivity of the composites have been investigated in detail with the Agilent 4294A from 40 Hz to 110 MHz. For the MWCNT filler, its one-dimensional structure and good electric properties could make the composites gain a great increase on dielectric constant. And the permittivity of the composites with fMWCNT=1.7% is twice higher than the composites with only NZF. Moreover, the permeability of all the composites nearly remains the same. All the above results indicate that the MWCNT-NZF-Epoxy composites own both dielectric and ferromagnetic properties.","PeriodicalId":182576,"journal":{"name":"2012 14th International Conference on Electronic Materials and Packaging (EMAP)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Electronic Materials and Packaging (EMAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMAP.2012.6507833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work, ferromagnetic Ni0.5Zn0.5Fe2O4 (NZF) particles were prepared through the co-precipitation method. Then, dielectric ferromagnetic composites with multi-walled carbon nanotubes (MWCNT) and NZF embedded into E-51 Epoxy matrix were synthesized by a curing process using tetraethylenepentamine (TEPA) as the curing agent. In order to facilitate the contrast, the volume fraction of the NZF ferrite was fixed at 17%, and the permeability and permittivity of the composites have been investigated in detail with the Agilent 4294A from 40 Hz to 110 MHz. For the MWCNT filler, its one-dimensional structure and good electric properties could make the composites gain a great increase on dielectric constant. And the permittivity of the composites with fMWCNT=1.7% is twice higher than the composites with only NZF. Moreover, the permeability of all the composites nearly remains the same. All the above results indicate that the MWCNT-NZF-Epoxy composites own both dielectric and ferromagnetic properties.