Fabrication of Freestanding Metallic MEMS Actuator for Minimal Stress-Induced Air-gap Variations

Sushil Kumar, D. S. Arya, Pushpapraj Singh
{"title":"Fabrication of Freestanding Metallic MEMS Actuator for Minimal Stress-Induced Air-gap Variations","authors":"Sushil Kumar, D. S. Arya, Pushpapraj Singh","doi":"10.1109/icee50728.2020.9776983","DOIUrl":null,"url":null,"abstract":"Suspended micro/nano-structures are the essential building blocks for a variety of micro/nano electromechanical (N/MEMS) applications. Owing to process variability these suspended blocks comprised significant residual-stress/stress-gradient during the fabrication, resulting in curled actuator profile that directly affects the actuation-gap ($G$). The electrostatic switching devices are highly sensitive to gap variations (as pull-in voltage, $V_{pi}^{2}\\propto G^{3}$). The present method and the results of its experimental investigation provide a compatible process for realizing invariant actuation air-gap using effective bending control essential requirement for electrostatic devices. We report a laser-driven scheme for stress reduction in the cantilever-based molybdenum micro-actuators without using any high-temperature process, like rapid thermal annealing (RTA). Finally, this method helps to realize freestanding micro/nano-actuators for various M/NEM devices (e.g. resonators, sensors and actuators) and can be used to reduce stress in back end of line (BEOL) technology.","PeriodicalId":436884,"journal":{"name":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icee50728.2020.9776983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suspended micro/nano-structures are the essential building blocks for a variety of micro/nano electromechanical (N/MEMS) applications. Owing to process variability these suspended blocks comprised significant residual-stress/stress-gradient during the fabrication, resulting in curled actuator profile that directly affects the actuation-gap ($G$). The electrostatic switching devices are highly sensitive to gap variations (as pull-in voltage, $V_{pi}^{2}\propto G^{3}$). The present method and the results of its experimental investigation provide a compatible process for realizing invariant actuation air-gap using effective bending control essential requirement for electrostatic devices. We report a laser-driven scheme for stress reduction in the cantilever-based molybdenum micro-actuators without using any high-temperature process, like rapid thermal annealing (RTA). Finally, this method helps to realize freestanding micro/nano-actuators for various M/NEM devices (e.g. resonators, sensors and actuators) and can be used to reduce stress in back end of line (BEOL) technology.
用于最小应力诱导气隙变化的独立式金属MEMS驱动器的制造
悬浮微/纳米结构是各种微/纳米机电(N/MEMS)应用的基本组成部分。由于工艺的可变性,这些悬浮块在制造过程中包含显著的残余应力/应力梯度,导致执行器轮廓卷曲,直接影响驱动间隙($G$)。静电开关器件对间隙变化非常敏感(如拉入电压,$V_{pi}^{2}\propto G^{3}$)。该方法及其实验研究结果为利用有效的弯曲控制实现静电器件恒定驱动气隙提供了一种兼容的过程。我们报告了一种激光驱动方案,用于减少悬臂式钼微致动器的应力,而不使用任何高温工艺,如快速热退火(RTA)。最后,该方法有助于实现各种M/NEM器件(如谐振器、传感器和致动器)的独立微/纳米致动器,并可用于减少线后端(BEOL)技术中的应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信