{"title":"Monolithic DC-DC converter analysis and MOSFET gate voltage optimization","authors":"V. Kursun, S. Narendra, V. De, E. Friedman","doi":"10.1109/ISQED.2003.1194746","DOIUrl":null,"url":null,"abstract":"The design of an efficient monolithic buck converter is presented in this paper. A low swing MOSFET gate drive technique is proposed that improves the efficiency characteristics of a DC-DC converter. A model of the parasitic impedances of a buck converter is developed. With this model, a design space is described which characterizes the integration of both active and passive devices of a buck converter onto the same die based on a 0.18 /spl mu/m CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is shown to be lower than a standard full voltage swing. An efficiency of 88% at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 volts to 0.9 volts with a low swing DC-DC converter. The power dissipation of a low swing DC-DC converter is reduced by 24.5%, improving the efficiency by 3.9% as compared to a full swing DC-DC converter.","PeriodicalId":448890,"journal":{"name":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Symposium on Quality Electronic Design, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2003.1194746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
The design of an efficient monolithic buck converter is presented in this paper. A low swing MOSFET gate drive technique is proposed that improves the efficiency characteristics of a DC-DC converter. A model of the parasitic impedances of a buck converter is developed. With this model, a design space is described which characterizes the integration of both active and passive devices of a buck converter onto the same die based on a 0.18 /spl mu/m CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is shown to be lower than a standard full voltage swing. An efficiency of 88% at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 volts to 0.9 volts with a low swing DC-DC converter. The power dissipation of a low swing DC-DC converter is reduced by 24.5%, improving the efficiency by 3.9% as compared to a full swing DC-DC converter.