{"title":"The study of carbon nanotube's length in reference to its thermal conductivity by molecular dynamics approach","authors":"B. Platek, T. Falat, J. Felba, Artur Borzdun","doi":"10.1109/ESIME.2010.5464538","DOIUrl":null,"url":null,"abstract":"Current paper focuses on the influence of carbon nanotube (CNT) length on its thermal conductivity. The powerful technique which is molecular modeling was used. The non-equilibrium molecular dynamics was implemented in commercially available software. The eight single-walled carbon nanotubes from 50 nm to 400 nm was investigated. The obtained results show the trend of increasing thermal conductivity for longer nanotubes.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Current paper focuses on the influence of carbon nanotube (CNT) length on its thermal conductivity. The powerful technique which is molecular modeling was used. The non-equilibrium molecular dynamics was implemented in commercially available software. The eight single-walled carbon nanotubes from 50 nm to 400 nm was investigated. The obtained results show the trend of increasing thermal conductivity for longer nanotubes.