{"title":"ECR position etching for high selectivity and high-rate N+ poly-Si patterning","authors":"S. Samukawa, M. Sasaki, Y. Suzuki, S. Mori","doi":"10.1109/VLSIT.1990.110978","DOIUrl":null,"url":null,"abstract":"A novel electron cyclotron resonance (ECR) plasma etching technology is described that produces simultaneously highly selective, high-rate, and anisotropic n+ poly-Si etching at a low acceleration voltage. ECR position etching for n+ poly-Si pattern fabrication is discussed. In this technology, a substrate is located at the ECR position in a plasma chamber, and etching is carried out without RF bias power. Due to the low ion energy, high ion current and highly collimated ion flux at the ECR position, n+ poly-Si etching with a high selectivity and a high rate can be realized. The n+ poly-Si etching rate at the ECR position is 3300 A/min, and an anisotropic etching profile is realized by using Cl2 etching gas. The selectivity ratio of n+ poly-Si to SiO2 etching is 260. These etching characteristics are explained by low ion energy, high ion current density and highly collimated ion flux at the ECR position","PeriodicalId":441541,"journal":{"name":"Digest of Technical Papers.1990 Symposium on VLSI Technology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers.1990 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.1990.110978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A novel electron cyclotron resonance (ECR) plasma etching technology is described that produces simultaneously highly selective, high-rate, and anisotropic n+ poly-Si etching at a low acceleration voltage. ECR position etching for n+ poly-Si pattern fabrication is discussed. In this technology, a substrate is located at the ECR position in a plasma chamber, and etching is carried out without RF bias power. Due to the low ion energy, high ion current and highly collimated ion flux at the ECR position, n+ poly-Si etching with a high selectivity and a high rate can be realized. The n+ poly-Si etching rate at the ECR position is 3300 A/min, and an anisotropic etching profile is realized by using Cl2 etching gas. The selectivity ratio of n+ poly-Si to SiO2 etching is 260. These etching characteristics are explained by low ion energy, high ion current density and highly collimated ion flux at the ECR position