Lulu Peng, Rongxiang Wu, Xiangming Fang, Y. Toyoda, Masashi Akahane, M. Yamaji, H. Sumida, J. Sin
{"title":"A novel 3D TSV transformer technology for digital isolator gate driver applications","authors":"Lulu Peng, Rongxiang Wu, Xiangming Fang, Y. Toyoda, Masashi Akahane, M. Yamaji, H. Sumida, J. Sin","doi":"10.1109/ISPSD.2013.6694399","DOIUrl":null,"url":null,"abstract":"In this paper, a novel 3D TSV (Through-Silicon-Via) transformer technology for power system-on-chip applications is proposed and demonstrated experimentally. The transformer used in the power system features a galvanic isolation of > 4 kV and a voltage gain of > -3 dB from 10 MHz to 100 MHz. It can be embedded in the bottom layer of a silicon substrate and sandwiched between system circuitries for ultimate area efficiency and the smallest possible form factor compared with other conventional on-silicon approaches. A digital isolator gate driver built using this transformer technology is achieved, and successful signal transfer is clearly illustrated.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, a novel 3D TSV (Through-Silicon-Via) transformer technology for power system-on-chip applications is proposed and demonstrated experimentally. The transformer used in the power system features a galvanic isolation of > 4 kV and a voltage gain of > -3 dB from 10 MHz to 100 MHz. It can be embedded in the bottom layer of a silicon substrate and sandwiched between system circuitries for ultimate area efficiency and the smallest possible form factor compared with other conventional on-silicon approaches. A digital isolator gate driver built using this transformer technology is achieved, and successful signal transfer is clearly illustrated.