S. Yamamoto, K. Nakadai, J. Valin, J. Rouat, F. Michaud, Kazunori Komatani, T. Ogata, HIroshi G. Okuno
{"title":"Making a robot recognize three simultaneous sentences in real-time","authors":"S. Yamamoto, K. Nakadai, J. Valin, J. Rouat, F. Michaud, Kazunori Komatani, T. Ogata, HIroshi G. Okuno","doi":"10.1109/IROS.2005.1545094","DOIUrl":null,"url":null,"abstract":"A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. We have adopted the missing feature theory (MFT) for automatic recognition of separated speech, and developed the robot audition system. A microphone array is used along with a real-time dedicated implementation of geometric source separation (GSS) and a multi-channel post-filter that gives us a further reduction of interferences from other sources. The automatic speech recognition based on MFT recognizes separated sounds by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. In this paper, we used the improved Julius as an MFT-based automatic speech recognizer (ASR). The Julius is a real-time large vocabulary continuous speech recognition (LVCSR) system. We performed the experiment to evaluate our robot audition system. In this experiment, the system recognizes a sentence, not an isolated word. We showed the improvement in the system performance through three simultaneous speech recognition on the humanoid SIG2.","PeriodicalId":189219,"journal":{"name":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2005.1545094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
A humanoid robot under real-world environments usually hears mixtures of sounds, and thus three capabilities are essential for robot audition; sound source localization, separation, and recognition of separated sounds. We have adopted the missing feature theory (MFT) for automatic recognition of separated speech, and developed the robot audition system. A microphone array is used along with a real-time dedicated implementation of geometric source separation (GSS) and a multi-channel post-filter that gives us a further reduction of interferences from other sources. The automatic speech recognition based on MFT recognizes separated sounds by generating missing feature masks automatically from the post-filtering step. The main advantage of this approach for humanoid robots resides in the fact that the ASR with a clean acoustic model can adapt the distortion of separated sound by consulting the post-filter feature masks. In this paper, we used the improved Julius as an MFT-based automatic speech recognizer (ASR). The Julius is a real-time large vocabulary continuous speech recognition (LVCSR) system. We performed the experiment to evaluate our robot audition system. In this experiment, the system recognizes a sentence, not an isolated word. We showed the improvement in the system performance through three simultaneous speech recognition on the humanoid SIG2.