Process optimizations for NBTI/PBTI for future replacement metal gate technologies

B. Linder, A. Dasgupta, T. Ando, E. Cartier, U. Kwon, R. Southwick, M. Wang, S. Krishnan, M. Hopstaken, M. Bajaj, R. Pandey, W. Chang, T. Yamashita, O. Gluschenkov, V. Narayanan, J. Stathis, S. Ray, J. Liu
{"title":"Process optimizations for NBTI/PBTI for future replacement metal gate technologies","authors":"B. Linder, A. Dasgupta, T. Ando, E. Cartier, U. Kwon, R. Southwick, M. Wang, S. Krishnan, M. Hopstaken, M. Bajaj, R. Pandey, W. Chang, T. Yamashita, O. Gluschenkov, V. Narayanan, J. Stathis, S. Ray, J. Liu","doi":"10.1109/IRPS.2016.7574532","DOIUrl":null,"url":null,"abstract":"Bias Temperature Instability (BTI) is a tremendous reliability concern for deeply scaled CMOS technologies, and is the limiting mechanism for further inversion layer thickness (Tinv) scaling for future nodes [1]. Replacement Metal Gate technologies are of particular concern, since the gate stack is not exposed to the high temperature source/drain anneals. We have identified four strategies for reducing BTI in Replacement metal gate technologies: Rapid Thermal Anneal (RTA) optimization, optimization of the HfO2 layer thickness, introducing a gate dielectric dopant for NBTI reduction, and effective Work Function tuning. Judiciously combining these four techniques enable further Tinv scaling for 10 nm and below.","PeriodicalId":172129,"journal":{"name":"2016 IEEE International Reliability Physics Symposium (IRPS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS.2016.7574532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Bias Temperature Instability (BTI) is a tremendous reliability concern for deeply scaled CMOS technologies, and is the limiting mechanism for further inversion layer thickness (Tinv) scaling for future nodes [1]. Replacement Metal Gate technologies are of particular concern, since the gate stack is not exposed to the high temperature source/drain anneals. We have identified four strategies for reducing BTI in Replacement metal gate technologies: Rapid Thermal Anneal (RTA) optimization, optimization of the HfO2 layer thickness, introducing a gate dielectric dopant for NBTI reduction, and effective Work Function tuning. Judiciously combining these four techniques enable further Tinv scaling for 10 nm and below.
优化NBTI/PBTI的工艺,为未来替代金属栅极技术
偏置温度不稳定性(BTI)是深度缩放CMOS技术的巨大可靠性问题,也是未来节点进一步缩放反转层厚度(Tinv)的限制机制[1]。更换金属闸板技术特别值得关注,因为闸板堆不会暴露在高温源/漏退火中。我们确定了在替代金属栅极技术中降低BTI的四种策略:快速热退火(RTA)优化,HfO2层厚度优化,引入栅极介电掺杂剂来降低NBTI,以及有效的功函数调整。明智地结合这四种技术,可以进一步实现10纳米及以下的Tinv缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信