Molecular dynamic simulations of maximum pull-out forces of embedded CNTs for sensor applications and validating nano scale experiments

S. Hartmann, O. Hölck, T. Blaudeck, S. Hermann, S. Schulz, T. Gessner, B. Wunderle
{"title":"Molecular dynamic simulations of maximum pull-out forces of embedded CNTs for sensor applications and validating nano scale experiments","authors":"S. Hartmann, O. Hölck, T. Blaudeck, S. Hermann, S. Schulz, T. Gessner, B. Wunderle","doi":"10.1109/EUROSIME.2014.6813830","DOIUrl":null,"url":null,"abstract":"We present investigations of pull-out tests on CNTs embedded in palladium by means of molecular dynamics (MD) and compare our results of maximum pull-out forces with values of nano scale in situ pull-out tests inside a scanning electron microscope (SEM). Our MD model allows the investigation of crucial influencing parameters on the interface behaviour, like CNT diameter, intrinsic CNT defects and functional groups. For the experiments we prepared simple specimens using silicon substrates and wafer level compliant technologies. We realised the nano scale experiment with a nanomanipulation system supporting an AFM cantilever with known stiffness as a force sensing element inside a SEM. Greyscale correlation has been used to evaluate the cantilever deflection. From simulations derived maximum pull-out forces are approximately 17 nN and depend on the existence of intrinsic defects or functional groups and weakly on temperature. Experimentally obtained maximum pull-out forces with values between 16-29 nN are in good agreement with the computational predictions. Our results are of significant interest for the design and a failure-mechanistic treatment of future mechanical sensors with integrated single-walled CNTs showing high piezoresistive gauge factor or other nano scale systems incorporating CNT-metal interfaces.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present investigations of pull-out tests on CNTs embedded in palladium by means of molecular dynamics (MD) and compare our results of maximum pull-out forces with values of nano scale in situ pull-out tests inside a scanning electron microscope (SEM). Our MD model allows the investigation of crucial influencing parameters on the interface behaviour, like CNT diameter, intrinsic CNT defects and functional groups. For the experiments we prepared simple specimens using silicon substrates and wafer level compliant technologies. We realised the nano scale experiment with a nanomanipulation system supporting an AFM cantilever with known stiffness as a force sensing element inside a SEM. Greyscale correlation has been used to evaluate the cantilever deflection. From simulations derived maximum pull-out forces are approximately 17 nN and depend on the existence of intrinsic defects or functional groups and weakly on temperature. Experimentally obtained maximum pull-out forces with values between 16-29 nN are in good agreement with the computational predictions. Our results are of significant interest for the design and a failure-mechanistic treatment of future mechanical sensors with integrated single-walled CNTs showing high piezoresistive gauge factor or other nano scale systems incorporating CNT-metal interfaces.
用于传感器应用的嵌入式碳纳米管的最大拔出力的分子动力学模拟和验证纳米尺度实验
我们通过分子动力学(MD)研究了嵌入钯中的碳纳米管的拔出试验,并将我们的最大拔出力结果与扫描电子显微镜(SEM)内纳米级原位拔出试验的值进行了比较。我们的MD模型允许研究影响界面行为的关键参数,如碳纳米管直径,固有碳纳米管缺陷和官能团。对于实验,我们使用硅衬底和晶圆级兼容技术制备了简单的样品。我们通过纳米操作系统实现了纳米尺度的实验,该系统支持具有已知刚度的AFM悬臂作为SEM内的力传感元件。采用灰度关联法对悬臂梁挠度进行了评价。从模拟中得到的最大拔出力约为17 nN,它依赖于固有缺陷或官能团的存在,对温度的影响较小。实验得到的最大拉拔力值在16-29 nN之间,与计算预测吻合较好。我们的研究结果对于未来具有高压阻测量因子的集成单壁碳纳米管机械传感器的设计和失效机制处理或其他包含碳纳米管-金属界面的纳米级系统具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信