Yun Shi, Santosh K. Sharma, M. Zierak, R. Phelps, D. Cook, T. Letavic
{"title":"Novel high voltage LDMOS using a variable fermi-potential field plate for best switching FOM and reliability tradeoff","authors":"Yun Shi, Santosh K. Sharma, M. Zierak, R. Phelps, D. Cook, T. Letavic","doi":"10.1109/ISPSD.2013.6694446","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the fundamental design tradeoff among specific on-resistance (Ron, sp), gate charge (Cgg), quasi-saturation, and reliability characteristics for an integrated high voltage LDMOS. A novel patterned gate design is proposed and implemented in a 120V-rated NLDMOS. Optimal design characteristics are demonstrated with 30% improvement in switching FOM (Ron, sp*Qgg) and a robust Id, lin shift passing 15 years lifetime specification. The new design technique is proven to significantly improve the high voltage LDMOS design tradeoff.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this paper, we discuss the fundamental design tradeoff among specific on-resistance (Ron, sp), gate charge (Cgg), quasi-saturation, and reliability characteristics for an integrated high voltage LDMOS. A novel patterned gate design is proposed and implemented in a 120V-rated NLDMOS. Optimal design characteristics are demonstrated with 30% improvement in switching FOM (Ron, sp*Qgg) and a robust Id, lin shift passing 15 years lifetime specification. The new design technique is proven to significantly improve the high voltage LDMOS design tradeoff.