Confidentiality meets protection in elastic optical networks

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
G. Savva, K. Manousakis, G. Ellinas
{"title":"Confidentiality meets protection in elastic optical networks","authors":"G. Savva,&nbsp;K. Manousakis,&nbsp;G. Ellinas","doi":"10.1016/j.osn.2021.100620","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>This work considers the joint problem of securing confidential demands against </span>eavesdropping attacks and protecting the network against link failures in elastic </span>optical networks<span><span> (EONs). Network coding is used to provide security for confidential connections by encrypting the data through XOR operations at the physical layer with other established connections in the network. Backup paths are also computed for protecting the primary path of the confidential connections, while ensuring that the level of security for the confidential demands is preserved in case of a link failure on the primary path or on any of the paths involved in the XOR process. A realistic network scenario is modeled, where four different classes of connections are considered with respect to their protection and security requirements, while a combination of novel </span>integer linear programming (ILP) and </span></span>heuristic algorithms are used to establish each class of demands in the network. The proposed algorithms are evaluated in terms of spectrum utilization, network blocking, and level of security provided. From the results obtained it is evident that confidential connections can be transmitted in a secure manner, while for the classes that require both security and protection, the connections retain their required level of security in the event of any single link failure in the network.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":"42 ","pages":"Article 100620"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100620","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Switching and Networking","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1573427721000175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 14

Abstract

This work considers the joint problem of securing confidential demands against eavesdropping attacks and protecting the network against link failures in elastic optical networks (EONs). Network coding is used to provide security for confidential connections by encrypting the data through XOR operations at the physical layer with other established connections in the network. Backup paths are also computed for protecting the primary path of the confidential connections, while ensuring that the level of security for the confidential demands is preserved in case of a link failure on the primary path or on any of the paths involved in the XOR process. A realistic network scenario is modeled, where four different classes of connections are considered with respect to their protection and security requirements, while a combination of novel integer linear programming (ILP) and heuristic algorithms are used to establish each class of demands in the network. The proposed algorithms are evaluated in terms of spectrum utilization, network blocking, and level of security provided. From the results obtained it is evident that confidential connections can be transmitted in a secure manner, while for the classes that require both security and protection, the connections retain their required level of security in the event of any single link failure in the network.

在弹性光网络中,保密性满足保护要求
这项工作考虑了弹性光网络(EONs)中保护机密需求免受窃听攻击和保护网络免受链路故障的联合问题。网络编码通过物理层的异或操作将数据与网络中其他已建立的连接进行加密,从而为机密连接提供安全性。还计算备份路径,以保护机密连接的主路径,同时确保在主路径或XOR过程中涉及的任何路径上发生链路故障时,保留机密需求的安全级别。建立了一个现实的网络场景,其中考虑了四种不同类型的连接的保护和安全需求,同时使用新颖的整数线性规划(ILP)和启发式算法的组合来建立网络中的每种需求。根据频谱利用率、网络阻塞和提供的安全级别对所提出的算法进行了评估。从获得的结果可以明显看出,机密连接可以以安全的方式传输,而对于既需要安全和保护的类,在网络中任何单个链路故障的情况下,连接保持其所需的安全级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical Switching and Networking
Optical Switching and Networking COMPUTER SCIENCE, INFORMATION SYSTEMS-OPTICS
CiteScore
5.20
自引率
18.20%
发文量
29
审稿时长
77 days
期刊介绍: Optical Switching and Networking (OSN) is an archival journal aiming to provide complete coverage of all topics of interest to those involved in the optical and high-speed opto-electronic networking areas. The editorial board is committed to providing detailed, constructive feedback to submitted papers, as well as a fast turn-around time. Optical Switching and Networking considers high-quality, original, and unpublished contributions addressing all aspects of optical and opto-electronic networks. Specific areas of interest include, but are not limited to: • Optical and Opto-Electronic Backbone, Metropolitan and Local Area Networks • Optical Data Center Networks • Elastic optical networks • Green Optical Networks • Software Defined Optical Networks • Novel Multi-layer Architectures and Protocols (Ethernet, Internet, Physical Layer) • Optical Networks for Interet of Things (IOT) • Home Networks, In-Vehicle Networks, and Other Short-Reach Networks • Optical Access Networks • Optical Data Center Interconnection Systems • Optical OFDM and coherent optical network systems • Free Space Optics (FSO) networks • Hybrid Fiber - Wireless Networks • Optical Satellite Networks • Visible Light Communication Networks • Optical Storage Networks • Optical Network Security • Optical Network Resiliance and Reliability • Control Plane Issues and Signaling Protocols • Optical Quality of Service (OQoS) and Impairment Monitoring • Optical Layer Anycast, Broadcast and Multicast • Optical Network Applications, Testbeds and Experimental Networks • Optical Network for Science and High Performance Computing Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信