Adaptive test selection for post-silicon timing validation: A data mining approach

Ming Gao, Peter Lisherness, K. Cheng
{"title":"Adaptive test selection for post-silicon timing validation: A data mining approach","authors":"Ming Gao, Peter Lisherness, K. Cheng","doi":"10.1109/TEST.2012.6401540","DOIUrl":null,"url":null,"abstract":"Test failure data produced during post-silicon validation contain accurate design- and process-specific information about the DUD (design-under-debug). Prior research efforts and industry practice focused on feeding this information back to the design flow via bug root-cause analysis. However, the value of this silicon data for helping further improvement of the post-silicon validation process has been largely overlooked. In this paper, we propose an adaptive test selection method to progressively tune the validation plan using knowledge automatically mined from the bug sightings during post-silicon validation. Experimental results demonstrate that the proposed fault-model-free data mining approach can prioritize those tests capable of uncovering more silicon timing errors, resulting in significant reduction of validation time and effort.","PeriodicalId":353290,"journal":{"name":"2012 IEEE International Test Conference","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2012.6401540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Test failure data produced during post-silicon validation contain accurate design- and process-specific information about the DUD (design-under-debug). Prior research efforts and industry practice focused on feeding this information back to the design flow via bug root-cause analysis. However, the value of this silicon data for helping further improvement of the post-silicon validation process has been largely overlooked. In this paper, we propose an adaptive test selection method to progressively tune the validation plan using knowledge automatically mined from the bug sightings during post-silicon validation. Experimental results demonstrate that the proposed fault-model-free data mining approach can prioritize those tests capable of uncovering more silicon timing errors, resulting in significant reduction of validation time and effort.
后硅时间验证的自适应测试选择:一种数据挖掘方法
在硅后验证期间产生的测试失败数据包含有关DUD(调试下的设计)的精确设计和特定于工艺的信息。之前的研究工作和行业实践集中于通过漏洞根源分析将这些信息反馈到设计流程中。然而,这些硅数据对于帮助进一步改进后硅验证过程的价值在很大程度上被忽视了。在本文中,我们提出了一种自适应测试选择方法,利用在硅后验证过程中从bug发现中自动挖掘的知识来逐步调整验证计划。实验结果表明,提出的无故障模型数据挖掘方法可以优先考虑那些能够发现更多硅时序错误的测试,从而大大减少验证时间和工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信