Applying Neural Networks to Delay Fault Testing: Test Point Insertion and Random Circuit Training

S. Millican, Yang Sun, Soham Roy, V. Agrawal
{"title":"Applying Neural Networks to Delay Fault Testing: Test Point Insertion and Random Circuit Training","authors":"S. Millican, Yang Sun, Soham Roy, V. Agrawal","doi":"10.1109/ATS47505.2019.000-7","DOIUrl":null,"url":null,"abstract":"This article presents methods of increasing logic built-in self-test (LBIST) delay fault coverage using artificial neural networks (ANNs) to selecting test point (TP) locations a method to train ANNs using randomly generated circuits. This method increases delay test quality both during and after manufacturing. This article also trains ANNs without relying on valuable third-party intellectual property (IP) circuits. Results show higher-quality TPs are selected in significantly reduced CPU time and third-party IP is not be required for ANN training.","PeriodicalId":258824,"journal":{"name":"2019 IEEE 28th Asian Test Symposium (ATS)","volume":"602 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 28th Asian Test Symposium (ATS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS47505.2019.000-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This article presents methods of increasing logic built-in self-test (LBIST) delay fault coverage using artificial neural networks (ANNs) to selecting test point (TP) locations a method to train ANNs using randomly generated circuits. This method increases delay test quality both during and after manufacturing. This article also trains ANNs without relying on valuable third-party intellectual property (IP) circuits. Results show higher-quality TPs are selected in significantly reduced CPU time and third-party IP is not be required for ANN training.
神经网络在延迟故障测试中的应用:测试点插入和随机电路训练
本文提出了利用人工神经网络(ann)选择测试点(TP)位置来增加逻辑内置自检(LBIST)延迟故障覆盖率的方法,以及使用随机生成电路训练ann的方法。这种方法提高了生产过程中和生产后的延迟测试质量。本文还在不依赖有价值的第三方知识产权(IP)电路的情况下训练人工神经网络。结果表明,在显著减少CPU时间的情况下选择了高质量的tp,并且不需要第三方IP进行人工神经网络训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信