Simulation of particle levitation due to dielectrophoresis

V. Rochus, S. Hannot, J. Golinval, D. Rixen
{"title":"Simulation of particle levitation due to dielectrophoresis","authors":"V. Rochus, S. Hannot, J. Golinval, D. Rixen","doi":"10.1109/ESIME.2010.5464526","DOIUrl":null,"url":null,"abstract":"The aim of the research is to model accurately dielectrophoresis using different numerical tools and compare them to experimental results. The dielectrophoresis phenomenon consists in the creation of electrostatic forces on nano or micro particles due to a gradient of electric field. The aim of such a setup is to control the motion of micro or nano particles for MEMS applications, for instance, for bioanalysis devices. To validate the numerical results, some prototypes have been fabricated at TU Delft. Using these simulations, a design of microstructure has been chosen to levitate Silica micro-particles. Experimental measurements have been performed and some characteristic behaviours of particle depending on the amplitude and the frequency of the applied voltage have been identified. The measurements are compared to the numerical simulation.","PeriodicalId":152004,"journal":{"name":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"404 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESIME.2010.5464526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of the research is to model accurately dielectrophoresis using different numerical tools and compare them to experimental results. The dielectrophoresis phenomenon consists in the creation of electrostatic forces on nano or micro particles due to a gradient of electric field. The aim of such a setup is to control the motion of micro or nano particles for MEMS applications, for instance, for bioanalysis devices. To validate the numerical results, some prototypes have been fabricated at TU Delft. Using these simulations, a design of microstructure has been chosen to levitate Silica micro-particles. Experimental measurements have been performed and some characteristic behaviours of particle depending on the amplitude and the frequency of the applied voltage have been identified. The measurements are compared to the numerical simulation.
介质电泳引起的粒子悬浮模拟
本研究的目的是使用不同的数值工具精确地模拟电介质电泳,并将其与实验结果进行比较。电偶现象是由于电场的梯度在纳米或微粒子上产生静电力。这种设置的目的是控制微或纳米粒子的运动,用于MEMS应用,例如,用于生物分析设备。为了验证数值结果,在代尔夫特工业大学制作了一些原型。通过这些模拟,选择了一种悬浮二氧化硅微粒的微结构设计。实验测量已经完成,粒子的一些特征行为取决于施加电压的幅度和频率已经确定。测量结果与数值模拟结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信