Lin Cheng, A. Agarwal, M. Schupbach, D. Gajewski, D. Lichtenwalner, V. Pala, S. Ryu, J. Richmond, J. Palmour, W. Ray, J. Schrock, A. Bilbao, S. Bayne, A. Lelis, C. Scozzie
{"title":"High performance, large-area, 1600 V / 150 A, 4H-SiC DMOSFET for robust high-power and high-temperature applications","authors":"Lin Cheng, A. Agarwal, M. Schupbach, D. Gajewski, D. Lichtenwalner, V. Pala, S. Ryu, J. Richmond, J. Palmour, W. Ray, J. Schrock, A. Bilbao, S. Bayne, A. Lelis, C. Scozzie","doi":"10.1109/ISPSD.2013.6694395","DOIUrl":null,"url":null,"abstract":"In this paper, we report our recently developed 2<sup>nd</sup> Generation, large-area (56 mm<sup>2</sup> with an active conducting area of 40 mm<sup>2</sup>) 4H-SiC DMOSFET, which can reliably block 1600 V with very low leakage current under a gate-bias (V<sub>G</sub>) of 0 V at temperatures up to 200°C. The device also exhibits a low on-resistance (R<sub>ON</sub>) of 12.4 mΩ at 150 A and V<sub>G</sub> of 20 V. DC and dynamic switching characteristics of the SiC DMOSFET have also been compared with a commercially available 1200 V/ 200 A rated Si trench gate IGBT. The switching energy of the SiC DMOSFET at 600 V input voltage bus is > 4X lower than that of the Si IGBT at room-temperature and > 7X lower at 150°C. A comprehensive study on intrinsic reliability of this 2<sup>nd</sup> generation SiC MOSFET has been performed to build consumer confidence and to achieve broad market adoption of this disruptive power switch technology.","PeriodicalId":175520,"journal":{"name":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.2013.6694395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we report our recently developed 2nd Generation, large-area (56 mm2 with an active conducting area of 40 mm2) 4H-SiC DMOSFET, which can reliably block 1600 V with very low leakage current under a gate-bias (VG) of 0 V at temperatures up to 200°C. The device also exhibits a low on-resistance (RON) of 12.4 mΩ at 150 A and VG of 20 V. DC and dynamic switching characteristics of the SiC DMOSFET have also been compared with a commercially available 1200 V/ 200 A rated Si trench gate IGBT. The switching energy of the SiC DMOSFET at 600 V input voltage bus is > 4X lower than that of the Si IGBT at room-temperature and > 7X lower at 150°C. A comprehensive study on intrinsic reliability of this 2nd generation SiC MOSFET has been performed to build consumer confidence and to achieve broad market adoption of this disruptive power switch technology.