The Balun Design by Embedding High Permittivity Material in The Substrate of CSP Package with Large Size

Y. Lu, Bo-Siang Fang, Hsuan-Hao Mi, Kuan-Ta Chen, Mike Tsai
{"title":"The Balun Design by Embedding High Permittivity Material in The Substrate of CSP Package with Large Size","authors":"Y. Lu, Bo-Siang Fang, Hsuan-Hao Mi, Kuan-Ta Chen, Mike Tsai","doi":"10.1109/EPTC.2018.8654314","DOIUrl":null,"url":null,"abstract":"In order to cope with the worldwide shortage of the MLCC (multilayer ceramic capacitor), this paper proposes a methodology of integrated lattice balun using a high permittivity substrate material. It is well known that discrete radio frequency (RF) front-end circuits are composed of MLCCs and chip inductors in many electronic products. Inserting a high permittivity material to replace decoupling capacitors is an effective method. Another way to lessen the quantity of MLCCs is embedding an integrated RF front-end circuit instead of MLCCs, such as a balun, filter or duplexer. In this study, an integrated lattice balun was designed for DCS (digital cellular system) 1800 MHz. The simulation results show that the designed balun achieves a return loss $< -23$ dB, an insertion loss $\\gt -0.25$ dB, a phase deviation form $180 \\circ$ to $182 \\circ$ and a magnitude deviation of less than 1.1 dB in the frequency range of DSC.","PeriodicalId":360239,"journal":{"name":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th Electronics Packaging Technology Conference (EPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2018.8654314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to cope with the worldwide shortage of the MLCC (multilayer ceramic capacitor), this paper proposes a methodology of integrated lattice balun using a high permittivity substrate material. It is well known that discrete radio frequency (RF) front-end circuits are composed of MLCCs and chip inductors in many electronic products. Inserting a high permittivity material to replace decoupling capacitors is an effective method. Another way to lessen the quantity of MLCCs is embedding an integrated RF front-end circuit instead of MLCCs, such as a balun, filter or duplexer. In this study, an integrated lattice balun was designed for DCS (digital cellular system) 1800 MHz. The simulation results show that the designed balun achieves a return loss $< -23$ dB, an insertion loss $\gt -0.25$ dB, a phase deviation form $180 \circ$ to $182 \circ$ and a magnitude deviation of less than 1.1 dB in the frequency range of DSC.
大尺寸CSP封装衬底嵌入高介电常数材料的Balun设计
为了解决多层陶瓷电容器在世界范围内的短缺问题,本文提出了一种采用高介电常数衬底材料的集成点阵平衡方法。众所周知,在许多电子产品中,离散射频(RF)前端电路是由mlcc和片式电感器组成的。采用高介电常数材料代替去耦电容器是一种有效的方法。另一种减少mlcc数量的方法是嵌入集成RF前端电路,而不是mlcc,例如平衡器,滤波器或双工器。在本研究中,设计了一种集成于DCS(数字蜂窝系统)1800mhz的点阵平衡器。仿真结果表明,所设计的平衡器在DSC频率范围内回波损耗< -23$ dB,插入损耗< -0.25$ dB,相位偏差从$180 \circ$到$182 \circ$,幅度偏差小于1.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信