A. Yoshino, K. Kumagai, S. Kurosawa, H. Itoh, K. Okumura
{"title":"Design methodology for low power, high-speed CMOS devices utilizing SOI technology","authors":"A. Yoshino, K. Kumagai, S. Kurosawa, H. Itoh, K. Okumura","doi":"10.1109/SOI.1993.344550","DOIUrl":null,"url":null,"abstract":"We have compared CMOS gate performances between bulk and SOI structures, using the circuit simulator SPICE with the simplest assumptions. Main results are as follows: (1) We have demonstrated that it is possible to estimate CMOS/SOI performances using the circuit simulator SPICE without any specific physical models for SOI transistors. (2) The reduction effect of the drain parasitic capacitance by the CMOS/SOI technology becomes more remarkable with a decrease in the supply voltage. (3) Just by increasing the channel width of the CMOS/SOI keeping its power consumption equal to that of the CMOS/BULK, the propagation delay time dependence on large load capacitance can be improved dramatically with higher drivability.<<ETX>>","PeriodicalId":308249,"journal":{"name":"Proceedings of 1993 IEEE International SOI Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE International SOI Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOI.1993.344550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We have compared CMOS gate performances between bulk and SOI structures, using the circuit simulator SPICE with the simplest assumptions. Main results are as follows: (1) We have demonstrated that it is possible to estimate CMOS/SOI performances using the circuit simulator SPICE without any specific physical models for SOI transistors. (2) The reduction effect of the drain parasitic capacitance by the CMOS/SOI technology becomes more remarkable with a decrease in the supply voltage. (3) Just by increasing the channel width of the CMOS/SOI keeping its power consumption equal to that of the CMOS/BULK, the propagation delay time dependence on large load capacitance can be improved dramatically with higher drivability.<>