M. Couret, G. Fischer, S. Frégonèse, T. Zimmer, C. Maneux
{"title":"Physical, small-signal and pulsed thermal impedance characterization of multi-finger SiGe HBTs close to the SOA edges","authors":"M. Couret, G. Fischer, S. Frégonèse, T. Zimmer, C. Maneux","doi":"10.1109/ICMTS.2019.8730964","DOIUrl":null,"url":null,"abstract":"A thermal impedance model of single-finger and multi-finger SiGe heterojunction bipolar transistors (HBTs) is presented. The heat flow analysis through the device has to be considered in two diffusion parts: the front-end-of-line (FEOL) diffusion and the back-end-of-line (BEOL) diffusion. Therefore, this new thermal impedance model features multi-poles network which has been incorporated in HiCuM L2 compact model. The HiCuM compact model simulation results are compared with on-wafer low-frequency S-parameters measurements at room temperature highlighting the device frequency dependence of self-heating mechanism. The simulation results are also compared to pulse measurements to improve reliability analysis.","PeriodicalId":333915,"journal":{"name":"2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 32nd International Conference on Microelectronic Test Structures (ICMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2019.8730964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
A thermal impedance model of single-finger and multi-finger SiGe heterojunction bipolar transistors (HBTs) is presented. The heat flow analysis through the device has to be considered in two diffusion parts: the front-end-of-line (FEOL) diffusion and the back-end-of-line (BEOL) diffusion. Therefore, this new thermal impedance model features multi-poles network which has been incorporated in HiCuM L2 compact model. The HiCuM compact model simulation results are compared with on-wafer low-frequency S-parameters measurements at room temperature highlighting the device frequency dependence of self-heating mechanism. The simulation results are also compared to pulse measurements to improve reliability analysis.