Electrochemical assembly and molecular dynamics simulation of SAM on copper for epoxy/copper adhesion improvement

Stephen C. T. Kwok, M. Yuen
{"title":"Electrochemical assembly and molecular dynamics simulation of SAM on copper for epoxy/copper adhesion improvement","authors":"Stephen C. T. Kwok, M. Yuen","doi":"10.1109/EPTC.2013.6745759","DOIUrl":null,"url":null,"abstract":"This work reports on adhesion enhancement effects of self-assembled organothiol treatment on copper (Cu)/epoxy interface, as well as a significant reduction in treatment time under the influence of electric potential. The interfacial adhesion has 20-fold enhancement through the treatment due to improved linkage between copper substrate and epoxy layer by chemisorbed organothiol molecules. The treatment time was greatly reduced by a factor 32 from 16 hours to 30 minutes thanks to the electrical field assisted method without compromising the maximum adhesion strength, which was shown to be in order of 97.2Jm-2. Molecular Dynamics (MD) simulations were also carried out for studying the surface coverage effect of Self-assembly Monolayer (SAM) on Cu surface towards adhesion strength between Cuiepoxy interface. Simulation results together with experimental data were then used for explaining the adhesion promotion mechanism between Cu/epoxy interface.","PeriodicalId":210691,"journal":{"name":"2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013)","volume":"422 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 15th Electronics Packaging Technology Conference (EPTC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPTC.2013.6745759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work reports on adhesion enhancement effects of self-assembled organothiol treatment on copper (Cu)/epoxy interface, as well as a significant reduction in treatment time under the influence of electric potential. The interfacial adhesion has 20-fold enhancement through the treatment due to improved linkage between copper substrate and epoxy layer by chemisorbed organothiol molecules. The treatment time was greatly reduced by a factor 32 from 16 hours to 30 minutes thanks to the electrical field assisted method without compromising the maximum adhesion strength, which was shown to be in order of 97.2Jm-2. Molecular Dynamics (MD) simulations were also carried out for studying the surface coverage effect of Self-assembly Monolayer (SAM) on Cu surface towards adhesion strength between Cuiepoxy interface. Simulation results together with experimental data were then used for explaining the adhesion promotion mechanism between Cu/epoxy interface.
铜表面SAM的电化学组装及分子动力学模拟
本工作报道了自组装有机硫醇处理对铜(Cu)/环氧树脂界面的附着力增强效果,以及在电位影响下显著缩短处理时间。通过化学吸附的有机硫醇分子改善了铜基体与环氧层之间的连接,使界面附着力提高了20倍。由于电场辅助方法,处理时间大大减少了32倍,从16小时减少到30分钟,而不影响最大粘附强度,其显示为97.2Jm-2。通过分子动力学(MD)模拟研究了自组装单层膜(SAM)在Cu表面的表面覆盖对环氧界面间粘附强度的影响。结合实验数据,分析了Cu/环氧树脂界面的粘结促进机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信