OFDM pulse shape generation using artificial neural networks

H. Akah, A. Kamel, H. El-Hennawy
{"title":"OFDM pulse shape generation using artificial neural networks","authors":"H. Akah, A. Kamel, H. El-Hennawy","doi":"10.1109/EURCON.2009.5167871","DOIUrl":null,"url":null,"abstract":"This paper presents an experiment of using neuronal networks as a pulse shape generator for CP-OFDM. A set of pulse shapes were generated using genetic algorithm that minimizes the mean square error of the timing offset estimator. These pulse shapes were used to train function approximation neural networks. Such neural networks make the use of adaptive pulse shaping in OFDM systems feasible. Results from neural networks simulation, which have shown the ability of neural networks to fulfill such function, are presented.","PeriodicalId":256285,"journal":{"name":"IEEE EUROCON 2009","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2009","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURCON.2009.5167871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an experiment of using neuronal networks as a pulse shape generator for CP-OFDM. A set of pulse shapes were generated using genetic algorithm that minimizes the mean square error of the timing offset estimator. These pulse shapes were used to train function approximation neural networks. Such neural networks make the use of adaptive pulse shaping in OFDM systems feasible. Results from neural networks simulation, which have shown the ability of neural networks to fulfill such function, are presented.
利用人工神经网络生成OFDM脉冲形状
本文介绍了一种利用神经网络作为CP-OFDM脉冲形状发生器的实验。利用遗传算法生成一组脉冲形状,使定时偏移估计器的均方误差最小。这些脉冲形状被用来训练函数逼近神经网络。这种神经网络使得自适应脉冲整形在OFDM系统中的应用成为可能。本文给出了神经网络仿真的结果,证明了神经网络能够实现这一功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信