{"title":"CMOS without doping: Midgap Schottky-barrier nanowire field-effect-transistors for high-temperature applications","authors":"Frank Wessely, Tillmann A. Krauss, U. Schwalke","doi":"10.1109/ESSDERC.2011.6044184","DOIUrl":null,"url":null,"abstract":"In this paper we report on a newly developed nanowire based field-effect device-architecture (NWFET) that can be used in high temperature environments. Our devices posess both high temperature stability and low OFF-state current. By changes in source/drain bias-polarity the electrical properties of the NW-devices can be tuned, whether the lowest possible leakage current, or maximum output current is desirable in a specific application.","PeriodicalId":161896,"journal":{"name":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2011.6044184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper we report on a newly developed nanowire based field-effect device-architecture (NWFET) that can be used in high temperature environments. Our devices posess both high temperature stability and low OFF-state current. By changes in source/drain bias-polarity the electrical properties of the NW-devices can be tuned, whether the lowest possible leakage current, or maximum output current is desirable in a specific application.