14nm BEOL TDDB reliability testing and defect analysis

T. Kane
{"title":"14nm BEOL TDDB reliability testing and defect analysis","authors":"T. Kane","doi":"10.1109/ICMTS.2015.7106094","DOIUrl":null,"url":null,"abstract":"14nm BEOL (back end of line) TDDB (time to dielectric defect breakdown) test site structures successfully detect reliability defects but pose significant challenges in defect analysis At these advanced technology nodes, the reduction in copper land cross sectional area is accompanied by increased current density and electromigration failure rates. TDDB reliability test structures must be sensitive to capturing reliability defects. These same TDDB test site structures combined with porous ultra low-k (ULK) dielectric films represent real challenges in localizing and then determining BEOL reliability defects. Defect localization is difficult due to the complexity of these multiple metal layers along with the presence of the porous, low k dielectric films which exhibit shrinkage or void formation when exposed to an e-beam/FIB ion beam > 1 keV. Due to the porosity of these ULK dielectric films, they are especially susceptible to gallium ion implantation. It has been reported elsewhere that suppressing copper diffusion at the copper land/cap interface can be achieved by depositing a thin layer of CoWP and doping the copper seed layer with manganese [15, 16, 17]. However, a method for analytically confirming that these approaches for suppressing the copper diffusion do not affect TDDB performance/electromigration behavior must be demonstrated.","PeriodicalId":177627,"journal":{"name":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2015.7106094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

14nm BEOL (back end of line) TDDB (time to dielectric defect breakdown) test site structures successfully detect reliability defects but pose significant challenges in defect analysis At these advanced technology nodes, the reduction in copper land cross sectional area is accompanied by increased current density and electromigration failure rates. TDDB reliability test structures must be sensitive to capturing reliability defects. These same TDDB test site structures combined with porous ultra low-k (ULK) dielectric films represent real challenges in localizing and then determining BEOL reliability defects. Defect localization is difficult due to the complexity of these multiple metal layers along with the presence of the porous, low k dielectric films which exhibit shrinkage or void formation when exposed to an e-beam/FIB ion beam > 1 keV. Due to the porosity of these ULK dielectric films, they are especially susceptible to gallium ion implantation. It has been reported elsewhere that suppressing copper diffusion at the copper land/cap interface can be achieved by depositing a thin layer of CoWP and doping the copper seed layer with manganese [15, 16, 17]. However, a method for analytically confirming that these approaches for suppressing the copper diffusion do not affect TDDB performance/electromigration behavior must be demonstrated.
14nm BEOL TDDB可靠性测试及缺陷分析
14nm BEOL(后端线)TDDB(电介质缺陷击穿时间)测试点结构成功检测出可靠性缺陷,但在缺陷分析中面临重大挑战。在这些先进技术节点上,铜陆地截面积的减少伴随着电流密度和电迁移故障率的增加。TDDB可靠性测试结构必须对捕获可靠性缺陷敏感。这些相同的TDDB测试场地结构与多孔超低k (ULK)介电膜相结合,对定位和确定BEOL可靠性缺陷构成了真正的挑战。由于这些多金属层的复杂性以及多孔、低k介电膜的存在,当暴露于电子束/FIB离子束bbb101 keV时,会出现收缩或形成空洞,因此缺陷定位是困难的。由于这些ULK介电膜的多孔性,它们特别容易受到镓离子注入的影响。其他地方也有报道称,通过沉积一层薄薄的cocp并在铜种子层中掺杂锰,可以抑制铜在铜地/帽界面处的扩散[15,16,17]。然而,必须证明一种分析证实这些抑制铜扩散的方法不影响TDDB性能/电迁移行为的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信