Thermo-mechanical stress investigation of integrated SAW strain sensors

Jochen Hempel, Sohaib Anees, J. Wilde, L. Reindl
{"title":"Thermo-mechanical stress investigation of integrated SAW strain sensors","authors":"Jochen Hempel, Sohaib Anees, J. Wilde, L. Reindl","doi":"10.1109/EUROSIME.2014.6813773","DOIUrl":null,"url":null,"abstract":"This paper presents investigations of thermo-mechanical stress generated due to the integration process of Surface Acoustic Wave (SAW) strain sensors. A 3D finite element (FE) model, based on visco-elastic material measurements, is developed for thermo-mechanical stress computation. The simulation results are compared with experiments. Therefore, SAW strain sensors were mounted, the sensor response and the sensor deformation measured. The deviation between the simulated and measured sensor chip deflection is ≤ 14.4% for the full measurement range. Simulated thermo-mechanical stresses were used for the frequency shift computation of the SAW sensor device. The calculated frequency shift and the performed deformation measurement verified the correctness of the FE model.","PeriodicalId":359430,"journal":{"name":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROSIME.2014.6813773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents investigations of thermo-mechanical stress generated due to the integration process of Surface Acoustic Wave (SAW) strain sensors. A 3D finite element (FE) model, based on visco-elastic material measurements, is developed for thermo-mechanical stress computation. The simulation results are compared with experiments. Therefore, SAW strain sensors were mounted, the sensor response and the sensor deformation measured. The deviation between the simulated and measured sensor chip deflection is ≤ 14.4% for the full measurement range. Simulated thermo-mechanical stresses were used for the frequency shift computation of the SAW sensor device. The calculated frequency shift and the performed deformation measurement verified the correctness of the FE model.
集成SAW应变传感器的热-机械应力研究
本文研究了表面声波(SAW)应变传感器在集成过程中产生的热机械应力。建立了一种基于粘弹性材料测量的三维有限元模型,用于热机械应力计算。仿真结果与实验结果进行了比较。因此,安装SAW应变传感器,测量传感器响应和传感器变形。在整个测量范围内,传感器芯片挠度的模拟值与实测值之间的偏差≤14.4%。采用模拟热机械应力对声表面波传感器装置进行频移计算。计算的频移和进行的变形测量验证了有限元模型的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信